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Model checking is an automatic technique for verifying whether some properties hold in a concurrent
system. Maude is a high-performance logical framework where other systems can be easily speci-
fied, executed, and analyzed. Moreover, Maude includes a model checker for checking properties
expressed in Linear Temporal Logic. However, when a property on a program written in a program-
ming language specified in Maude does not hold the counterexample generated by this system refers
to the Maude semantics, which can be difficult to follow.

In this paper we present Selene, a generic framework for dealing with asynchronous concurrent
systems that allows users to manipulate the counterexample generated by the Maude model checker
to relate it to the program being analyzed. This is achieved by providing a kernel for dealing with
messages and memory, which are later handled in the counterexample; the user can specify the details
of his semantics on top of this kernel.
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1 Introduction

Model checking [3] is an automatic technique for checking whether some properties, expressed in modal
logic, hold in a concurrent system. Although this is a very powerful technique, the implementation of
an efficient and reliable model checker takes years and hence only a small number of model checkers
are available. This is unfortunate, because the range of applications requiring model checking is huge
and hence translations are usually required, which requires to formally prove their correctness and might
make the obtained counterexamples difficult to understand.

On the other hand, we observe an increased interest in the context of rewriting systems in defining
various languages to cover many programming language paradigms. This idea is presented in the rewrit-
ing logic semantics project [9], where the programming languages semantics are defined as rewriting
systems using Maude, and it is followed by the work in the K framework [11]. Maude [4] is a high-
level language and high-performance system supporting both equational and rewriting logic computation.
Maude modules correspond to specifications in rewriting logic [8]], a logic that allows the representation
of many models of concurrent and distributed systems. This logic is an extension of membership equa-
tional logic [2]], an equational logic that, in addition to equations, allows the statement of membership
axioms characterizing the elements of a sort. Rewriting logic extends membership equational logic by
adding rewrite rules that represent transitions in a concurrent system and can be nondeterministic. In
the context of [9]], these rules correspond to the execution of the different instructions in our program-
ming language, hence allowing a natural representation for any programming language semantics. As
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a semantical framework, Maude has been used to specify the semantics of several languages, such as
LOTOS [13]], CCS [13]], and Java [5]. Moreover, the K-Maude compiler [12]], which is able to translate
K specifications into Maude, has eased the methodology to describe programming language semantics
in Maude.

Maude provides a model checker for properties defined Linear Temporal Logic. However, when
checking properties on programs whose semantics has been defined in Maude the obtained counterex-
ample does not refer to the the program itself but to the rewriting rules defining the semantics, hence
intertwining rules relevant for the particular execution that failed to fulfill the property (e.g. memory
updates) and rules only relevant from the semantics point of view (e.g. the transitive closure). This is
quite unfortunate, since one of the main points of a semantic framework such as Maude is to specify and
analyze new paradigms.

In this paper we present Selene, an experimental Maude framework that generalizes the definition of
concurrent systems and simplifies the counterexamples obtained by performing model checking. This is
achieved by providing the world, a set of elements that define our application such that the nodes that will
run the program, the processes inside those nodes, the messages inside the network, and any valuable
data we need in the execution, as well as a mechanism to manipulate them once a counterexample is
obtained. Note that, since we talk about nodes and network, our goal is to apply these techniques to
concurrent programming languages that uses message passing.

A practical example using model checking would be checking whether an error occurs. Taking our
semantics, defined by our rules, we can define properties like hasAnyFailed to check if any process in
our world will fail by an error or an uncaught exception. Then we will check—against the initial state of
our world—the next logic formula: (J (— hasAnyFailed). This formula means: always, in all the states,
the current state does not have any failed process.

The rest of the paper is structured as follows: Section [2]introduces why a generic language is useful
to our purpose. Section [3|explains the basic ideas underlying the tool, while Section |4 show us a model
checking counterexample and how it would be like after being transformed into its processed version.
Section [5] shows some related work to this project. Finally, Section [6] concludes and outlines some
lines of future work to improve the tool. The Selene source code and examples are available at https:
//github.com/gorkinovich/selene.

2 One Machine to Rule Them All

In this section we motivate the use of a common kernel—based on the basics of actor-style languages, like
mailboxes with infinite buffer space and asynchronous sending of messages—for our world in order to
use different asynchronous concurrent programming languages. To do so, we need a generic language to
be executed by a generic machine model. Using this generic “machine”, we provide the implementation
of shared components between languages, such as the memory, the messages, and the network.

This idea of a generic language is inspired in how most of the modern languages are transformed to
be executed in machine language like C++ or FORTRAN. Moreover, we also have the example of other
languages which are transformed into a bytecode language—to be interpreted or compiled when it is
executed—Ilike Java or Python. In both cases the final “language” is much simpler than the original used
to write the source code in our projects.

We illustrate these concepts by means of a simple example. Since Maude has been designed to write
system specifications, what would be needed to bring a program written in Erlandﬂ—like the next one at

'The print function is not a BIF in Erlang, but is used in the examples instead io: format to simplify the case study.
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Figure [[}—to the rewriting engine?

-module (test) .

server() ->
register(server, self()),
server_loop().

server_loop() ->
receive V ->
print(V, "\n"),
server_loop (V)
end.

worker () ->
server ! "EXTERMINATE",
server ! "ANNIHILATE",
server ! "DESTROY".

Figure 1: The echo server test example in the Erlang language.

Before answering this question, let us see the purpose of the code shown. This is an echo server
example. We have 3 functions to work. The server function is the main entry of the echo server; it
registers the process with a name and goes to the server loop. The server_loop function is the server
loop and it waits to receive anything and prints the received data in the output buffer. The receive
expression in Erlang can contain several clauses, each one with a different pattern, and optionally a
guard condition to check over the received value previously matched. The worker function sends 3
strings to the server.

What would be needed to bring that written program to the rewriting engine? We would make an
equational theory inside a Maude functional module to express the Erlang syntax. After that, we would
implement a system module to represent the inference rules of the semantics as rewrite rules. Then we
would have our system inside Maude, and since Maude theories are executable this semantics become an
interpreter of our new language for free, and hence it is possible to execute Erlang programs by rewriting
with the rew command.

Note, however, that any modification in either the syntax or the semantics would force us to modify
these modules. So once we have our Erlang specification, let us say we want to use the same idea with
Scala. We would need to make a whole new implementation, start from the ground, because the syntax
and some of the semantics are not the same. But taking a closer look, we can realize—as we said before
in this section—there are some shared concepts and ideas in the way many languages works.

So the idea we work with, is to make a generic language to be executed by Maude, handling most
of the shared concepts in the execution of a program, and using a different semantics implementation to
add the differences between semantics. To achieve this, we have to make a translator from the original
language to the generic one. Then we will add the transitional rules that define certain unique aspects of
the language we are working on.

We chose Erlang as first language to work with because of its simplicity and the concurrent program-
ming model, which follows the actor model. Many concepts in the modeled machine used by Selene are
inspired by the Erlang platform, without losing the scope of being able to use other languages. Let us
see an example to illustrate this concept:
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% Erlang inc function /* C inc function */
inc(X) when is_number(X) -> X + 1. int inc(int X) { return X + 1; }

Both functions have only one clause, with only one parameter, which has to satisfy one condition (to
be a number in Erlang and to be an integer in C). While its semantics may differ—because you are able
to call inc in Erlang with a wrong value, provoking an exception in runtime, but in C will not compile
if you try to pass an structure as parameter in the call—the concepts expressed in the syntax are very
similar and can be expressed the same in a generic way, in most cases.

3 The Selene Framework

The main idea underlying Selene is to make an abstract machine to run concurrent programs, distributed
or not. Once the code is translated into the abstract language of the machine in Selene and taking rules
with the semantics, we are able to define the properties to be used in the Maude model checker. Before
continuing, let us check at Figure 2l how it would be the previous Erlang example coded in the Selene
generic language.

Gns (1, ’test,
@fn(3, ’server,
@cs(3, nil, nil,
@op(4, @call, @1t(4, ’register), @sq(4, @1t(4, ’server)
@op(4, @call, @1t(4, ’self), @sq(4, nil))))
@op(5, @call, @1t(5, ’server_loop), @sq(5, nil))))
@fn(7, ’server_loop,
@cs(7, nil, nil,
@rc(8, ©cs(8, @1t(8, ’V), nil,
Q@op(9, @call, @1t(9, ’print), @sq(9, @1t(9, V) @1t(9, "\n")))
Qop(10, @call, @1t(10, ’server_loop), @sq(10, nil))
), nil)))
@fn(13, ’worker,
@cs(13, nil, nil,
@op(14, @snd, @1t(14, ’server), @1t(14, "EXTERMINATE"))
Q@op(15, @snd, @1t(15, ’server), @1t(15, "ANNIHILATE"))
@op(16, @snd, @1t(16, ’server), @1t(16, "DESTROY")))))

Figure 2: The echo server test example in the Selene generic language.

We have a namespace (@ns) test with three functions (@fn): server, server_loop, and worker.
Each function has one clause (@cs); none of them has parameters or conditions to check. Inside the
clauses, we have a list of statements, like unary or binary operations (Qop), the if expression (@if),
the case-of expression (@cf), the receive expression (@rc), or the try-catch-finally expression.
Each statement has one or more expressions to be executed. As you can see, all the data structures
have an integer number as first field; this number is used as an index to find the lineE] inside the source
code project. Another important expression in the language is literal (@1t), where we can store Boolean
values, numbers, strings, atomsfJetc. ..

2QOnly source lines and not source columns are used in the framework, since source columns have not been used in the
current state of the project. If they are needed in the future, the project would be refactored to allow their use.

3We are using the Maude sort Qid, which stands for any string of characters starting by a quote (*), to work with the atom
concept.
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The Selene framework is experimental; this means that the generic language we are talking about
still lack some features. The current state of the tool is presented in Figure 3] Languages similar to
Erlang—functional languages with messages passing—can be represented by the current state of the
framework. Things we cannot express—at this moment—are loops, object-oriented programming and
some advanced features of Erlang such as list comprehensions. Certainly, those features should be lines
of future work.

People familiar with the erl_syntax module in Erlang, should notice the strong inspiration—of the
way Erlang represents its programs in syntax trees—over the current generic language inside Selene. To
include something like a while loop in the generic language, we would extend the current framework
with a structure similar to: @wl(Index, ConditionExpression, BodyExpressions). One of the
cons of this style—to express source code—is the danger to have lots of similar syntactical structures to
fit different languages, adding complexity to the implementation or even losing the objective of making
a the kernel as generic as we would like to.

Symbol Type Fields
@lt Literal Index, Value
Qop Operation Index, Symbol, Right Expression
Index, Symbol, Left Expression, Right Expression
@sq Sequence Index, List of Expressions
@ns Namespace Index, Name, Declarations
@fn Function Index, Name, Clauses
@bk Block Index, Body
@cs Clause Index, Pattern, Guard, Body
Q@if If-Else Index, Clauses, Else Body
@cf Case—Switch | Index, Test Expression, Clauses
Qtc Try—Catch Index, Test Expression, Clauses/Body, Catch Clauses, Finally Body
Qrc Receive—After | Index, Clauses, After Clause

Figure 3: The current structures of the generic language.

The Selene machine executes—in the world of the application—the code written in the generic lan-
guage shown in Figure 2| The structure of the world in the Selene framework consists of a set of nodes.
Each node can execute any number of processes. The processes can send messages to any other pro-
cess in the world network. We also have an object with the source code project and another object with
general information about the current statuﬂ of the world.

When we instantiate a process we call a function as main entry of the process. Any function has a
context with the data and the code to be executed. Since functions can call another function, the process
has a stack of context. Inside the context there is a stack of ambits, each one contains the variables inside
the scopeE] the code to be executed, and a flag with the execution state of the current statement.

Any function contains a list of statements. Functions can be called by another function or by a new

4 Actually, the status object only contains the program coded in the generic language and a natural number to assign the next
index number to be used in the system (e.g. when the tool needs an id number to identify a node or a process to be created by
an operation).

5Some languages like Java has several scope levels inside its functions, others like JavaScript do not. So the semantics of
the current language to execute must decide—when the program exits an ambit—if the created variables inside the ambit must
be merged in the previous one or just disappear.




6 Selene: A Generic Framework for Model Checking Concurrent Programs

process to be spawned. A statement is an expression, but it can be a complex expression that may need to
be executed in sub-expressions. This lead us to have a state machine in Figure d]to evaluate statements.

[ After Ambit ] [ Finished ] [ Error ]
Executable 0
.. -
. . ™ I
(Msg Walt] [ Initial [ Calling ]
. )
4 Warking
.. -

Figure 4: The statement states flowchart.

A statement starts at the “Initial” state. A statement is executable when all the sub-expressions
are literal values or obtained ValuesE] With complex statements, Selene evaluates the leftmost executable
sub-expression and replaces it in the statement with the obtained value. After executing all the statements,
the whole expression will end in the “Finished” state; this will lead the process to go to the next statement
in the current ambit. There are situations where it is needed to start a new context (when calling a
function) or start a new ambit inside the current context (e.g. when we compute one branch of an if
statement). This will stop the evaluation of the statement and continue working in the first statement of
the new context or ambit. When the program exists the context or the ambit, resumes the evaluation of
the previous statement, taking the obtained value to replace the evaluated sub-expression.

A special state is “Message Wait”. This one occurs when we enter a receive statement. The
receive statement is executable, except in the case we have a non-value expression in the after clause[]
Executing the receive statement will set the expression in a wait state, until a new message is received
or if the messages mailbox contains a previous message received before entering the receive statement.

To execute our program—with the rewriting engine—we have a conﬁguratiodir] in Maude with an
object that contains the initial data to configure the Selene engine. The engine translates the code into
the generic language and Maude rewrites the world with the defined semantics rules. The result obtained
by executing the code in Figure [2]is depicted in Figure

An obtained value is a value received by the evaluation operation in the framework. Since Maude does not support to
have different types of values—like integer and floats—inside the same sort without an encapsulation, we need a temporal data
structure to be use as an expression—inside the code we execute—to store the calculated final values of any evaluation.

In the current version of the framework, the after clause is not yet implemented. The after is used by Erlang as a
time-out, because the receive statement blocks the execution. If the time-out—set in milliseconds—is reached, the execution
exits the current receive statement.

8The sort Configuration in Maude is a multiset of objects and messages.
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[Rule: world.init] [Rule: statement.exec]
[Rule: statement.init] [Rule: process.msg.get]
[Rule: statement.work] [Rule: statement.work]
[Rule: statement.exec] [Rule: statement.exec]
[Rule: statement.init] [Node: @id(1)] => "ANNIHILATE\n"
[Rule: statement.next] [Rule: statement.next]
[Rule: statement.exec] [Rule: statement.exec]
[Rule: statement.init] [Rule: statement.init]
[Rule: process.msg.add] [Rule: process.msg.add]
[Rule: statement.next] [Rule: statement.next]
[Rule: statement.exec] "Final result:" "DESTROY"
[Rule: statement.init] [Rule: process.finish]
[Rule: statement.exec] [Rule: statement.exec]
[Rule: process.msg.get] [Rule: statement.exec]
[Rule: statement.work] [Rule: process.msg.get]
[Rule: statement.exec] [Rule: statement.work]
[Node: @id(1)] => "EXTERMINATE\n" [Rule: statement.exec]
[Rule: statement.next] [Node: @id(1)] => "DESTROY\n"
[Rule: statement.exec] [Rule: statement.next]
[Rule: statement.init] [Rule: statement.init]
[Rule: process.msg.add] [Rule: statement.exec]
[Rule: statement.next] [Rule: statement.exec]
[Rule: statement.exec] [Rule: process.msg.get]
[Rule: statement.init] [Rule: statement.exec]
rewrite in TESTS :

testworld
result Configuration :

< ’project : Project | files : @sf("test.erl","-module(test).\n\nserver() ->\n register(ser
ver, self()),\n server_loop() .\n\nserver_loop() ->\n receive V ->\n print(V, \"\\n\
"),\n server_loop(V)\n end.\n\nworker() ->\n server ! \"EXTERMINATE\",\n server
! \"ANNIHILATE\",\n server ! \"DESTROY\".",16)> < ’status : Status | nextIndex : 6,program :

@ns (1, ’test,@fn(3, ’server,@cs(3,nil,nil,@op(4,0call,@lt (4, register),0sq(4,01t (4,

’server)@op(4,0call,@1t (4, ’self),0sq(4,nil))))@op(5,@call,@1t (5, ’server_loop) ,0sq(5,
nil))))@fn(7,’server_loop,@cs(7,nil,nil,@rc(8,0cs(8,01t(8,’V),nil,@op(9,@call, 01t (9,
’print),@sq(9,01t(9,’V)@1t(9,"\n")))@op(10,@call,@1t (10, ’server_loop) ,@sq(10,nil))),

nil)))@fn(13, ’worker,@cs(13,nil,nil,@op(14,@snd,@lt (14, ’server) ,@lt (14, "EXTERMINATE"))@op(
15,0@snd, @1t (15, >server) ,@1t (15, "ANNIHILATE"))Qop(16,@snd,@1t (16, ’server) ,01t (16,
"DESTROY")))))> < @id(1): Node | cin : "",cout "EXTERMINATE\nANNIHILATE\nDESTRUY\n",heap
: @ms(nil),info : < ’server : ProcessAlias | node 1,process : 1 > > < @id(1): Process |
context :(Q@cx(’test ’server,@am(@op(5,0call,@lt(5,’server_loop),@sq(5,nil)),0@CallingState,
nil),@ms(nil),@vl(true))@cx(’test ’server_loop,@am(@rc(8,@cs(8,@1t(8,’V),nil,@op(9,Qcall,
@1t (9, ’print) ,0sq(9,01t(9,’V)@1t(9,"\n")))@op(10,0call,@1lt(10, ’server_loop),@sq(10,nil))),
nil) ,@MsgWaitState,nil)@am(@op(10,0@call,@1t(10, ’server_loop),@sq(10,nil)),@CallingState,
Qur(’V,@sr(1,1,1))),6ms(@mc(1,0@vl("EXTERMINATE"))),@v1(’ok))@cx(’test ’server_loop,@am(@rc(
8,0cs(8,01t(8,°V),nil,@op(9,0call,@1t(9, print) ,0@sq(9,01t(9,’V)@1t(9,"\n")))@op(10,0call,
@1t (10, ’server_loop) ,0sq(10,nil))) ,nil) ,@MsgWaitState,nil)@am(@op(10,0call, @1t (10,
’server_loop) ,0sq(10,nil)) ,@CallingState,@vr(’V,@sr(2,1,1))),@ms(@mc(2,@v1 ("ANNIHILATE"))),
@v1(’ok))@cx(’test ’server_loop,@am(@rc(8,0@cs(8,0@1t(8,’V),nil,@op(9,@call,@1t(9, print),
@sq(9,@1t(9,’V)@1t(9,"\n")))@op(10,@call,@1t (10, ’server_loop),0sq(10,nil))),nil),
@MsgWaitState,nil)@am(@op(10,@call,@1t (10, ’server_loop),@sq(10,nil)),@CallingState,@vr(’V,
@sr(3,1,1))) ,0ms (@mc(3,@v1("DESTROY"))),0@v1(’0k))Q@cx(’test ’server_loop,@am(@rc(8,0@cs(8,
@1t (8,’V) ,nil,@op(9,0call,@1t(9, print) ,0sq(9,01t(9,’V)@1t(9,"\n")))@op(10,0call,@1t (10,
’server_loop) ,0sq(10,nil))) ,nil) ,@MsgWaitState,nil) ,@ms(nil) ,@vl(nothing))) ,messages : nil,
newMsgsFlag : false,owner : @id(1)>

Figure 5: The Maude output after rewrite the echo test example.
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The first part of this output refers to the print attributes—inside the Maude rules and equations—in
the current implementation of the Erlang semantics, which provide a trace of the execution. The second
part is the Maude output of the command (rew testworld .) for rewriting the constant testworld
containing the example above, which might be difficult to follow.

Inside the Configuration of the result are 4 objects, with syntax < 0I : CI | AtS >, with OI
the object identifier, CI the class identifier, and AtS a set of attributes, each of them with syntax AT : V,
with AT the attribute identifier and V its current value. The first object, with the id ’project, is a project
class; it contains the source code files of the project in the field files. The second object, with the id
’status, is a status class with the program code in the generic language used by Selene in the field
program. The third object, with the id @id (1) EI is a node class; it contains the current output buffer of
that “computer” in the field cout, and inside the current general info the ’server object is a process
alias class to identify the server atom as a process id. Finally, the fourth object, with the id @1d (1), is a
process class; it contains the current state of the echo server process, where the context field contains
the context stack with the server and server_loop calls, the messages field contains the queue of
received messages, the newMsgsFlag indicates if a new message has arrived, and the owner contains the
object identifier of the node object where the process has been instantiated.

4 Model Checking in Selene

With the Selene framework and the semantics of a language specified in transitional rules, we can execute
code inside Maude. We can also apply model checking over the different states of the Selene machine.
A useful and simple example is check whether our execution can be free of execution errors, using one
of the formulas shown in Section [II The Maude command used is (red modelCheck(testworld,
[1 (* 7hasAnyFailed)) .) and a minor fragment of the obtained output is at the Figure [ The
7hasAnyFailed inside the formula is an atomic proposition, which checks whether a process has an
error or exception at the top of its context stack. The testworld is the initial Configuration used in
Figure [5]

In this example, we only show the second transition of the counterexample. Before and after this
transition we use ellipses to indicate where the rest of the transitions should be. The counterexample
ends with the final state, labelled with the deadlock. The size of the counterexample is 243 lines.

The transition shown in this counterexample contains several Maude objects inside a configuration:
the project with the code, the status with the translated code, a node, the server process, and the worker
process. As you may see, following an execution through all that text could be quite harsh. But all the
execution data is right there.

The idea used in Selene is to transform the counterexample into a compact data file containing only
relevant info. It is possible to filter which rules the user wants to obtain in the transformed data, hence
providing different granularity levelm From the beginning to the deadlock, Selene takes the state and the
rule label of the current transition, and the state of the next transition. Finding the differences between
both states, Selene can find which process is the last evaluated in the transition rules, and then select the
desired data by the engine.

Which info—thinks Selene—is relevant to the user? The selected info is the current used rule in the
step, the process where the rule was executed, and a list of the current process in the world (each one of

9The @id container is used to assign a natural number as an object identifier.
10T our example we only excluded the world. init rule, because at the beginning we have no processes in the world, so we
cannot compare how the processes may have changed, since there was no one.
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reduce in TESTS :
modelCheck(testworld, [] (° ?7hasAnyFailed))
result ModelCheckResult :
counterexample(...{< ’project : Project | files : @sf("test.erl","-module(test).\n

\nserver() ->\n register(server, self()),\n server_loop() .\n\nserver_loop() ->\n receiv

e V ->\n print(V, \"\\n\"),\n server_loop(V)\n end.\n\nworker() ->\n server

! \"EXTERMINATE\",\n server ! \"ANNIHILATE\",\n server ! \"DESTROY\".",16)> < ’status :
Status | nextIndex : 3,program : @ns(1l,’test,@fn(3,’server,0cs(3,nil,nil,@op(4,0@call,@lt(4,
’register) ,0sq(4,01t (4, server)Qop(4,Qcall,01t (4, ’self),0sq(4,nil))))Cop(5,0@call,01lt(5,
’server_loop) ,0sq(5,nil))))@fn (7, ’server_loop,@cs(7,nil,nil,@rc(8,0cs(8,01t(8,’V),nil,@op(
9,0call,@1t (9, ’print) ,@sq(9,@1t(9,’V)@Lt(9,"\n")))Cop(10,0@call,@1t (10, ’server_loop) ,@sq(10,
nil))),nil)))@fn(13, worker,@cs(13,nil,nil,@op(14,0@snd, @1t (14, server) ,01t (14,
"EXTERMINATE"))@op(lS,@snd,@lt(lS,’server),@1t(15,”ANNIHILATE"))@op(lG,@snd,@lt(lG,
’server) ,@1t (16, "DESTROY")))))> < @id(1): Node | cin : "",cout : "",heap : @ms(nil),info :
none > < @id(1): Process | context : Qcx(’test ’server,@am(Qop(4,0call,@lt(4,’register),
@sq(4,01t (4, server)@op(4,0call,@lt (4, self),0sq(4,nil))))@op(5,0call,@lt (5, server_loop),
@sq(5,nil)),@InitialState,nil),@ms(nil),@vl(nothing)) ,messages : nil,newMsgsFlag : false,
owner : @id(1)> < @id(2): Process | context : Q@cx(’test ’worker,@am(Qop(14,@snd,@lt(14,
’server) ,@lt (14, "EXTERMINATE") ) @op(15,@snd,@1t (15, *server) ,01t (15, "ANNIHILATE") )@op (16,
@snd,@1t (16, ’server) ,01t(16,"DESTROY")) ,@InitialState,nil) ,O@ms(nil),@vl(nothing)) ,messages
: nil,newMsgsFlag : false,owner : @id(1)>,’statement.init}...,{...,deadlock})

Figure 6: The Maude model checker output after reduce a formula with the echo test example.

the contains where in the code is the execution—with the index id—, the variables in the top context, the
queue of messages, and the final result returned by the top context).

The result of the transformation is shown in Figure [/} Selene gives a String that represents a JSON
object to represent the transformed info. Using the JSON. parse method in JavaScript we obtain the final
object shown in Figure [§] Using this standard format, we are able to make a visual representation of the
execution, like a virtual debug session with the generated report. Since JSON is quite popular, we can
use the object in an application or in a web page inside a web browser.

Before finishing this section, let me explain some details about how the Figure [§]is related to the
Figure[T] When the user translated the Erlang source code into the generic language (shown at Figure[2)),
the source lines are stored inside the structures used by the generic language as a global index value. The
program transformed into the generic language can be executed by the rewriting engine in Maude, so the
model checker rewrites the world—where our program is—to build a counterexample. A little peek of
the counterexample of the echo test is shown at Figure[6] Inside the chain of states of the counterexample,
we have each state our world goes through. Inside the world we can find the created processes of our
application, inside each of them we can obtain the current expression ready to execute, and inside each
expression is stored the index related to the current source code line. Taking the important info—between
each change of the world, inside the chain of states of the counterexample—to build each object in the
JSON array report, we must not forget to include between that info the source code line index (which
can be found inside the index field of the objects inside the array stored in the processes field, shown at
Figure [g).

From the final JSON can be implemented an HTML page where the source code at Figure [1| can be
display. Since the object at Figure[I|is an array of steps, the page can paint the line—where the execution
is located at the current step and in the process which has been made the change—with a highlight colour.
It also can display the variables of the current context of any process, to give a peek to the user about the
current data. So in the standard execution of the echo server program, no error is reached, everything is
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reduce in TESTS :
modelCheckTransformer (testworld, [] (~ 7hasAnyFailed))
result String :

"[{\"step\":\"statement.init\",\"node\":1,\"process\":1,\"processes\": [{\"node\":1,\"process\"
:1,\"index\":4,\"variables\": []1,\"messages\": [],\"result\":\"null\"},{\"node\":1,\"process\":2
,\"index\":14,\"variables\": [],\"messages\": [],\"result\":\"null\"}1},{\"step\":\"statement.in
it\",\"node\":1,\"process\":2,\"processes\": [{\"node\":1,\"process\":1,\"index\":4,\"variables
\":[],\"messages\":[],\"result\":\"null\"},{\"node\":1,\"process\":2,\"index\":14,\"variables\
": [1,\"messages\": [],\"result\":\"null\"}]1},{\"step\":\"statement.exec\",\"node\":1,\"process\
":2,\"processes\": [{\"node\":1,\"process\":1,\"index\":4,\"variables\": [],\"messages\": [1,\"re
sult\":\"null\"},{\"node\":1,\"process\":2,\"index\":14,\"variables\": [],\"messages\": [],\"res
ult\":\"<error>\"}1},{\"step\":\"statement.error\",\"node\":1,\"process\":2,\"processes\": [{\"
node\":1,\"process\":1,\"index\":4,\"variables\": [1,\"messages\": []1,\"result\":\"null\"},{\"no
de\":1,\"process\":2,\"index\":0,\"variables\": [],\"messages\": [],\"result\":\"<error>\"}11},{\
"step\":\"statement.work\",\"node\":1,\"process\":1,\"processes\": [{\"node\":1,\"process\":1,\
"index\":4,\"variables\": [],\"messages\": [],\"result\":\"null\"}]1},{\"step\":\"statement.exec\
",\"node\":1,\"process\":1,\"processes\": [{\"node\":1,\"process\":1,\"index\":4,\"variables\":
[1,\"messages\": [],\"result\":\"true\"}1},{\"step\":\"statement .next\",\"node\":1,\"process\":
1,\"processes\": [{\"node\":1,\"process\":1,\"index\":5,\"variables\": []1,\"messages\": [],\"resu
1t\":\"true\"}]},{\"step\":\"statement.init\",\"node\":1,\"process\":1,\"processes\": [{\"node\
":1,\"process\":1,\"index\":5,\"variables\": []1,\"messages\": [],\"result\":\"true\"}1},{\"step\
":\"statement.exec\",\"node\":1,\"process\":1,\"processes\": [{\"node\":1,\"process\":1,\"index
\":8,\"variables\": [],\"messages\": [],\"result\":\"null\"}1},{\"step\":\"statement.exec\",\"no
de\":1,\"process\":1,\"processes\": [{\"node\":1,\"process\":1,\"index\":8,\"variables\": [],\"m
essages\": [],\"result\":\"null\"}]1}]"

Figure 7: The transformed Maude model checker output after reduce the previous example.

[{"step":"statement.init","node":1,"process":1,"processes": [{"node":1,"process":1,"index":4,
"variables":[],"messages":[],"result":"null"},{"node":1,"process":2,"index":14,"variables": [],
"messages":[],"result":"null"}]},

{"step":"statement.init","node":1,"process":2,"processes": [{"node":1,"process":1,"index":4,
"variables": [],"messages":[],"result":"null"},{"node":1,"process":2,"index":14,"variables": [],
"messages":[],"result":"null"}]},

{"step":"statement.exec","node":1,"process":2,"processes": [{"node":1,"process":1,"index":4,
"variables":[],"messages":[],"result":"null"},{"node":1,"process":2,"index":14,"variables": [],
"messages": [],"result":"<error>"1}]},
{"step":"statement.error","node":1,"process":2,"processes": [{"node":1,"process":1,"index":4,
"variables": [],"messages":[],"result":"null"},{"node":1,"process":2,"index":0,"variables": [],
"messages": [],"result":"<error>"1}1},
{"step":"statement.work","node":1,"process":1,"processes": [{"node":1,"process":1,"index":4,
"variables":[],"messages":[],"result":"null"}]},
{"step":"statement.exec","node":1,"process":1,"processes": [{"node":1,"process":1,"index":4,
"variables":[],"messages": [],"result":"true"}]},
{"step":"statement.next","node":1,"process":1,"processes": [{"node":1,"process":1,"index":5,
"variables":[],"messages": [],"result":"true"}]},
{"step":"statement.init","node":1,"process":1,"processes": [{"node":1,"process":1,"index":5,
"variables":[],"messages":[],"result":"true"}1},
{"step":"statement.exec","node":1,"process":1,"processes": [{"node":1,"process":1,"index":8,
"variables":[],"messages": [],"result":"null"}]},
{"step":"statement.exec","node":1,"process":1,"processes": [{"node":1,"process":1,"index":8,
"variables":[],"messages":[],"result":"null"}]}]

Figure 8: The transformed Maude model checker output JSON object.
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ok. But using model checking we find that—in this test sample—the order of execution of the processes
matters.

It might not be clear enough the potential behind this methodology, since the developer can just
simply open the Erlang console and type debugger:start () to start a classical debugging session. But
this approach uses model checking to verify programs, which allows finding potential errors inside an
algorithm. In concurrent programs, this allows the developer to find the context and state where the
program breaks, even when in debugging sessions was not found any error.

5 Related Work

There are some model checkers in several languages, like McErlang [6] in Erlang scene. McErlang
main focus is use model checking in concurrent software, not in sequential software, looking for errors
in the execution of a source codeE] McErlang parameters select the algorithm to be used while model
checking, which evaluates some properties defined in the algorithm itself, so the user cannot write a LTL
formula to be checked by the tool.

Another model checker—this one focused on Java scene—is Java Pathfinder [7]], developed at the
NASA Ames Research Center. Focused on apply model checking to concurrent programs, tries to find
defects such as data races, deadlocks, and uncaught exceptions (e.g., division by zero exception). Since
JPF model checks Java bytecode, should be possible to model check Scala programs as well. Some of
the current JPF extensions allows to use the tool as user interface model checker, test case generator by
means of symbolic execution, etc.

A last example of a programming language model checker is CPAchecker [[1], which is focused on
C language programs. There are other model checking tools to verify properties over Petri nets, Algebra
of Communicating Processes, etc. So there are not many model checking tools focused in source code
and the few ones focused on source code analysis—Ilike McErlang—are developed to analyze only one
language.

Meanwhile in the Maude community there are projects that implements operational semantics in
languages like the Calculus of Communicating Systems [13]], giving an opportunity to the developers to
use the Maude model checker to verify concurrent systems modeled in the language. In the Erlang scene,
a Core Erlang [10]] implementation in Maude has been made to demonstrate the use of the Maude model
checker with this language.

There are hardly any standard APIs or frameworks built on the idea of porting model checker tools
across different languages in a generic way. Nonetheless, the ideas behind Selene have not been fully
developed yet on this subject, to prove whether the proposed concepts are going in the right direction.

6 Conclusions and Future Work

We have presented in this paper a generic tool to evaluate concurrent programs with the Maude rewriting
engine. The core of the tool is a kernel to manage shared concepts like the memory or the messages.
This core uses a generic language to represent the source code of the program. The user defines the
semantics of the language, using the execution framework of the core inside the transitional rules—
defined by the user—used by the Maude’s rewriting engine. It also allows us to use model checking with

"You can find an example of how to use McErlang in a tutorial presentation at: https://babel.ls.fi.upm.es/trac/
McErlang/attachment/wiki/midTermWorkshop/paper.pdf


https://babel.ls.fi.upm.es/trac/McErlang/attachment/wiki/midTermWorkshop/paper.pdf
https://babel.ls.fi.upm.es/trac/McErlang/attachment/wiki/midTermWorkshop/paper.pdf
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the written programs and transforms the output into a JSON object which contains the final report when
a counterexample is found. That final report can be represented in HTML to the final user.

The immediate line of future work would be to implement more features of the Erlang language—

syntactical structures, pattern matching, BIFs, etc.—to improve the framework. The second line of future
work would be the implementation of the HTML representation of the counterexample transformed
report. It would be also interesting to find a way to use semantics as a parameter in the system, making
Selene more flexible. Moreover, we also plan to study how to apply slicing to the counterexample, so we
can track the source of an unexpected value.
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