A Typeful Integration of SQL into Curry

Michael Hanus

University of Kiel
Programming Languages and Compiler Construction

WFLP 2016

Joint work with Julia Krone

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 1

Real World Applications with Databases

Access to relational databases in programming languages

@ Pass SQL statements as strings (JDBC,. . .)
-+ popular since SQL is well known
— source of security leaks in web applications
— SQL syntax errors at run time
ill-typed database access or type casts
@ Language-specific database libraries (Haskell/DB,...)

-+ no syntax errors (and, maybe, no type errors)

+ avoid security leaks with string checks/escapes
expressiveness often limited (process data in programs)
gap to SQL syntax (library combinators instead of SQL)

Our proposal: embed SQL in program code

@ check SQL statements at compile time (preprocessor)
@ compile-time detection of syntax and type errors
@ exploit ER model of data, relations instead of foreign keys

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 2

Typeful SQL Embedding in Curry

Access to relational databases in programming languages

@ implemented in functional logic language Curry
@ ideas could be transferred to other higher-order typed languages
@ concept: SQL queries are “integrated code”

—— Get name/age of students within a given age range:
studAgeBetween :: Int — Int — IO (SQLResult [(String,Int)])
studAgeBetween min max =
‘'sgl Select Name, Age
From Student Where Age between {min} and {max}
Order By Name Desc;’’

@ SQL code replaced by type-safe calls to DB library operations

Curry, Integrated Code, CDBI libraries, ER models, SQL compiler

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 3

@ declarative multi-paradigm language
(higher-order concurrent functional logic language)

@ extension of Haskell (non-strict functional language)
@ better (high-level) APIs (GUI, web, database,...), eDSLs,...

Datatypes (values): enumerate all constructors

data Bool = True | False
data List a = [] | a : List a -—— [a]

conc :: [a] — [a] — [a] last :: [a] —> a
conc [] ys = yS last xs | conc _ [x] == xs
conc (x:xs) ys = X : CONC XS yS = X where x free

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 4

Integrated Code (aka Quasi Quotation)

@ string in source program with own syntax rules

@ enclosed in back ticks and ticks: *‘*lang ..."’
lang: specifies kind of embedded language

@ code integrator replaces integrated code by Curry expression

Example: regular expressions in POSIX syntax

if s ‘‘regex (abx)+’’ then ... else ...
Code integrator: exploits RegExp library and replaces string by
‘match' [Plus [Literal ’"a’, Star [Literal "b’]]]

Another example: predicate for Curry identifiers:

isID :: String — Bool
isID s = s ‘‘regex [a—-zA-Z] [a-zA-Z0-9 ']x"’

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry

WFLP 2016

Integrated Code

Currently embedded languages:

@ regular expressions

@ format printing (like C’'s printf)
@ HTML and XML (with layout rules)

@ SQL statements (new!)

~ specific library support required!

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 [

CDBI: Curry Database Interface Libraries

@ abstract from concrete database access
@ support type-safe access to database entities
@ provide infrastructure for type-safe SQL embedding w.r.t. ER models

Base layer: raw database access

—— Return open connection to SQLite database:
connectSQLite :: String — IO Connection

—-— Type of database actions:
type DBAction a = Connection — IO (SQLResult a)

—— Type of query results:
type SQLResult a = Either DBError a

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 7

CDBI: Curry Database Interface Libraries

Typed select operation

select :: String — [SQLValue] — [SQLType]
— DBAction [[SQLValue]]

Arguments: SQL with “holes”, typed hole values, types of return values
Result: table of return values

data SQLValue = SQLString String | SQLInt Int |
data SQLType = SQLTypeString | SQLIypelInt | ...

Typed database access:

select "select Age,Email from Student
where First = ’'?’ and Name = "?2/;"
[SQLString "Joe", SQLString "Fisher"]
[SQLTypelInt, SQLTypeString]

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 8

CDBI: Curry Database Interface Libraries

Next level: typed entities

data EntityDescription a =
ED String [SQLType] (a — [SQLValue]) ([SQLValue] — a)

Entity specification contains:

@ entity (table) name

@ column types

@ conversion (show/read) functions

Example: Student entity (generated from ER model)

data Student = Student String String Int String Int

studentDescription :: EntityDescription Student
studentDescription =
ED "Student" [SQLTypeString,..., SQLTypelInt]

(A (Student name first num email age) — ...)

(A[SQLString name,...] — Student name first num email age)

v

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 9

CDBI: Curry Database Interface Libraries

Modeling SQL where clauses

—— Selection criteria
data Criteria = Criteria Constraint (Maybe GroupBy)

—— Greater-than constraint
(.>.) :: Value a — Value a — Constraint

—— Typed values: constants or DB columns
data Value a = Val SQLValue | Col (Column a)

int :: Int — Value Int
int = Val o SQLInt

studentColumnAge :: Column Int —— generated from ER model

v

Example: . ..where Student.Age > 21

Col studentColumnAge .>. int 21 ~» ok

Col studentColumnAge .>. float 3.4 ~» compile-time error

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 10

CDBI: Curry Database Interface Libraries

Entity-level type-safe selection: getEntries

SQL query
Select x From Student

Where Age > 21

Order By Name
Limit 5;

Desc

corresponds to Curry expression

getEntries
All

studentDescription

-— also:

Distinct

(Criteria (Col studentColumnAge .>. int 21) Nothing)

[descOrder studentColumnName]

(Just 5)

—— order specification
—— limit result entries

Michael Hanus (CAU Kiel)

A Typeful Integration of SQL into Curry

WFLP 2016

11

Entity-Relationship Models

Michael Hanus (CAl

Student +participated_by +participated. Lecture
Name Participation Title
Topic
MatNum (0..n) (0..n)
Email
Age
+teaches
1) +belongs_to, (0..n)
+belongs_to L1
Teaching
Taking +taught_by
(1,1)
Lecturer
+has_a "
0.. ame)
o=t Firstname
Result
Attempt Belonging
Grade
Points
+results_in
(0..n)
Place
Resulting Street
Strr
RoomNr
(0..n)
(11) +has ExamPlace
+result_of Y, +in
Exam
GradeAverage
(0..n) Eamiim PRIy e L—
+Taking_place Fat _Tme
A Typeful Integration of SQL into Curry WFLP 2016 12

Entity-Relationship Models

Representation as Curry data term

data ERD = ERD String [Entity] [Relationship]

data Entity = Entity String [Attribute]
data Attribute = Attribute String Domain Key Null

ERD2CDBI translator

@ ER model — relational data base (foreign keys,...)

@ Generates Curry module with entity descriptions

© Generates info file for SQL translator

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 13

SQL Translator

@ replace SQL string by Curry expression
@ check conformity with ER model

@ check types of columns and derive types for embedded Curry
expressions

Get names of all students with a given age:

studNamesWithAge :: Int — IO (SQLResult [String])
studNamesWithAge x =
‘'sgl Select s.Name
From Student as s
Where s.Age = {x};'’

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 14

SQL Translator

studNamesWithAge x =
‘'sgql Select s.Name From Student as s Where s.Age = {x};’’

Translation:

studNamesWithAge x = runWithDB "/.../Uni.db"
(getColumn []
[SingleCS All
(singleCol studentNameColDesc 0 none)
(TC studentTable 0 Nothing)
(Criteria (equal (colNum studentColumnAge 0) (int x))
Nothing)]

M—

[] Nothing)

SQL query string (passed to DB at run time):

select ("Student"."Name") from ’Student’
where (("Student"."Age") == 30);

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 15

SQL Translator

Extension to SQL: support for relations

—— Names/grades of students with grade better than 2.0
studGoodGrades :: IO (SQLResult [(String, Float])
studGoodGrades =
‘'sgl Select Distinct s.Name, r.Grade
From Student as s, Result as r
Where Satisfies s has.a r And r.Grade < 2.0;’’

Condition Satisfies el rel e2:

@ entities el and e2 are in relation rel of ER model

@ avoid explicit uses of foreign keys

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 16

Structure of the SQL Translator

reads |

SQLConverter

Michael Hanus (CAU Kiel)

String SQLScanner
SQLE)ken
sQoken| - 5O parser
SQLAST
SQLAST SQLNamer
Info/
QL SQL
= Consistency
Info/
squast | SQLTyper
SQLAST
String SQLTranslator

A Typeful Integration of SQL into Curry

5 SymbolTable

WFLP 2016

17

Conclusions

Typeful SQL Integration

@ high-level and reliable access to databases
@ easy to use due to SQL syntax
@ compile-time detection of ill-formed or ill-typed SQL statements

@ use of logical (ER) database model with relationships
to avoid foreign keys

@ support further database systems

@ check ER model against schema of actual database

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 18

