
A Typeful Integration of SQL into Curry

Michael Hanus

University of Kiel
Programming Languages and Compiler Construction

WFLP 2016

Joint work with Julia Krone

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 1

Real World Applications with Databases

Access to relational databases in programming languages
1 Pass SQL statements as strings (JDBC,. . .)

+ popular since SQL is well known
− source of security leaks in web applications
− SQL syntax errors at run time
− ill-typed database access or type casts

2 Language-specific database libraries (Haskell/DB,. . .)
+ no syntax errors (and, maybe, no type errors)
+ avoid security leaks with string checks/escapes
− expressiveness often limited (process data in programs)
− gap to SQL syntax (library combinators instead of SQL)

Our proposal: embed SQL in program code
check SQL statements at compile time (preprocessor)
compile-time detection of syntax and type errors
exploit ER model of data, relations instead of foreign keys

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 2

Typeful SQL Embedding in Curry

Access to relational databases in programming languages
implemented in functional logic language Curry
ideas could be transferred to other higher-order typed languages
concept: SQL queries are “integrated code”

-- Get name/age of students within a given age range:
studAgeBetween :: Int → Int → IO(SQLResult[(String,Int)])
studAgeBetween min max =
‘‘sql Select Name, Age

From Student Where Age between {min} and {max}
Order By Name Desc;’’

SQL code replaced by type-safe calls to DB library operations

Tools:
Curry, Integrated Code, CDBI libraries, ER models, SQL compiler

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 3

Curry [POPL’97, www.curry-language.org]

declarative multi-paradigm language
(higher-order concurrent functional logic language)
extension of Haskell (non-strict functional language)
better (high-level) APIs (GUI, web, database,. . .), eDSLs,. . .

Datatypes (values): enumerate all constructors
data Bool = True | False
data List a = [] | a : List a -- [a]

Program rules: f t1 . . . tn | c = r

conc :: [a] → [a] → [a] last :: [a] -> a
conc [] ys = ys last xs | conc _ [x] == xs
conc (x:xs) ys = x : conc xs ys = x where x free

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 4

Integrated Code (aka Quasi Quotation)

Concept:
string in source program with own syntax rules
enclosed in back ticks and ticks: ‘‘lang . . .’’
lang: specifies kind of embedded language
code integrator replaces integrated code by Curry expression

Example: regular expressions in POSIX syntax

if s ‘‘regex (ab*)+’’ then . . . else . . .

Code integrator: exploits RegExp library and replaces string by
‘match‘ [Plus [Literal ’a’, Star [Literal ’b’]]]

Another example: predicate for Curry identifiers:
isID :: String → Bool
isID s = s ‘‘regex [a-zA-Z][a-zA-Z0-9_’]*’’

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 5

Integrated Code

Currently embedded languages:

regular expressions

format printing (like C’s printf)

HTML and XML (with layout rules)

SQL statements (new!)

 specific library support required!

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 6

CDBI: Curry Database Interface Libraries

Motivation
abstract from concrete database access
support type-safe access to database entities
provide infrastructure for type-safe SQL embedding w.r.t. ER models

Base layer: raw database access

-- Return open connection to SQLite database:
connectSQLite :: String → IO Connection

-- Type of database actions:
type DBAction a = Connection → IO (SQLResult a)

-- Type of query results:
type SQLResult a = Either DBError a

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 7

CDBI: Curry Database Interface Libraries

Typed select operation

select :: String → [SQLValue] → [SQLType]
→ DBAction [[SQLValue]]

Arguments: SQL with “holes”, typed hole values, types of return values
Result: table of return values

data SQLValue = SQLString String | SQLInt Int | . . .
data SQLType = SQLTypeString | SQLTypeInt | . . .

Typed database access:

select "select Age,Email from Student
where First = ’?’ and Name = ’?’;"
[SQLString "Joe", SQLString "Fisher"]
[SQLTypeInt, SQLTypeString]

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 8

CDBI: Curry Database Interface Libraries

Next level: typed entities

data EntityDescription a =
ED String [SQLType] (a → [SQLValue]) ([SQLValue] → a)

Entity specification contains:
1 entity (table) name
2 column types
3 conversion (show/read) functions

Example: Student entity (generated from ER model)

data Student = Student String String Int String Int

studentDescription :: EntityDescription Student
studentDescription =
ED "Student" [SQLTypeString,. . .,SQLTypeInt]

(λ(Student name first num email age) → . . .)
(λ[SQLString name,. . .] → Student name first num email age)

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 9

CDBI: Curry Database Interface Libraries

Modeling SQL where clauses

-- Selection criteria
data Criteria = Criteria Constraint (Maybe GroupBy)

-- Greater-than constraint
(.>.) :: Value a → Value a → Constraint

-- Typed values: constants or DB columns
data Value a = Val SQLValue | Col (Column a)

int :: Int → Value Int
int = Val ◦ SQLInt
studentColumnAge :: Column Int -- generated from ER model

Example: ...where Student.Age > 21

Col studentColumnAge .>. int 21 ok

Col studentColumnAge .>. float 3.4 compile-time error

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 10

CDBI: Curry Database Interface Libraries

Entity-level type-safe selection: getEntries
SQL query
Select * From Student

Where Age > 21
Order By Name Desc
Limit 5;

corresponds to Curry expression
getEntries
All -- also: Distinct
studentDescription
(Criteria (Col studentColumnAge .>. int 21) Nothing)
[descOrder studentColumnName] -- order specification
(Just 5) -- limit result entries

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 11

Entity-Relationship Models

(1,1)

(0..n)

Taking

+has_a

+belongs_to

Student

Name
Firstname
MatNum
Email
Age

Result

Attempt
Grade
Points

Lecture

Title
Topic

Lecturer

Name
Firstname

Exam

GradeAverage

Place

Street
StrNr
RoomNr

Time

Time

Participation

+participated_by +participated

(0..n) (0..n)

Teaching

+teaches

+taught_by

(1,1)

(1,1)

(0..n)+belongs_to

Resulting

+results_in

+result_of

(0..n)

(1,1)

Belonging

(0..n)
+has_a ExamPlace

ExamTime

+taking_place
(0..n)

(1,1)
+in

+ taking_place +at

(0..n) (1,1)

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 12

Entity-Relationship Models

Representation as Curry data term

data ERD = ERD String [Entity] [Relationship]

data Entity = Entity String [Attribute]
data Attribute = Attribute String Domain Key Null
. . .

ERD2CDBI translator

1 ER model 7→ relational data base (foreign keys,. . .)

2 Generates Curry module with entity descriptions

3 Generates info file for SQL translator

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 13

SQL Translator

Main tasks
replace SQL string by Curry expression
check conformity with ER model
check types of columns and derive types for embedded Curry
expressions

Get names of all students with a given age:

studNamesWithAge :: Int → IO (SQLResult [String])
studNamesWithAge x =
‘‘sql Select s.Name

From Student as s
Where s.Age = {x};’’

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 14

SQL Translator

studNamesWithAge x =
‘‘sql Select s.Name From Student as s Where s.Age = {x};’’

Translation:
studNamesWithAge x = runWithDB "/. . ./Uni.db"
(getColumn []
[SingleCS All

(singleCol studentNameColDesc 0 none)
(TC studentTable 0 Nothing)
(Criteria (equal (colNum studentColumnAge 0) (int x))

Nothing)]
[] Nothing)

SQL query string (passed to DB at run time):
select ("Student"."Name") from ’Student’

where (("Student"."Age") == 30);

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 15

SQL Translator

Extension to SQL: support for relations

-- Names/grades of students with grade better than 2.0
studGoodGrades :: IO (SQLResult [(String, Float])
studGoodGrades =

‘‘sql Select Distinct s.Name, r.Grade
From Student as s, Result as r
Where Satisfies s has a r And r.Grade < 2.0;’’

Condition Satisfies e1 rel e2:

entities e1 and e2 are in relation rel of ER model

avoid explicit uses of foreign keys

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 16

Structure of the SQL Translator

Info file

SQLConverter

SQLScanner

SQLParser

SQLNamer

SQL
Consistency

SQLTyper

SQLTranslatorString

SQLToken

SQLAST

SQLAST

SQLAST

SQLAST

String

SQLParserTypes

SymbolTable

SQLAST

SQLToken

reads

Info/

Info/

uses

uses

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 17

Conclusions

Typeful SQL Integration

high-level and reliable access to databases

easy to use due to SQL syntax

compile-time detection of ill-formed or ill-typed SQL statements

use of logical (ER) database model with relationships
to avoid foreign keys

Future work:
support further database systems

check ER model against schema of actual database

Michael Hanus (CAU Kiel) A Typeful Integration of SQL into Curry WFLP 2016 18

