Proving Non-Deterministic Computations in Agda

S. Libby

In collaboration with S. Antoy, M. Hanus

Portland State University

September 13, 2016

Why Dependant Types?

- prove correctness of programs
- (a b : Int) \rightarrow a + b \equiv b + a
- Curry Howard Isomorphism
 - true if we can write a function with this type
- all programs must terminate
 - loop = loop has any type

NON-DETERMINISM IN AGDA

- Dependant types are hard
 - Common problem: prove a + b \equiv b + a
- some problems are easier to state with non-determinism
- middle ground between proof assistants and SMT solvers

Functional Logic Programming

- FLP combines functional and logic programming
- langauge: Curry
- non-determinism introduced with ? operator
- coin = 0 ? 1

• coin could have the value of either 0 or 1

• programs are evaluated via Narrowing

Dependant Types

- Types depend of values
- In fact there is no distinction between types/values/kinds
- A type is anything whose type is Set. Tree a : Set
- A value is anything whose type is a type. leaf 1 : Tree Int

Two Types of Non-Determinism

- Set of Values
- Planned Choices

6

24

- Create a tree of possible values
- data ND a : Set where
- Val a : ND A
- a $\ref{eq:alpha}$ b : ND A \rightarrow ND A \rightarrow ND A
 - analog in Curry: ? :: $a \rightarrow a \rightarrow a$

Set of Values

- mapND : {A B : Set} \rightarrow (A \rightarrow B) \rightarrow ND A \rightarrow ND B
 - apply deterministic function to non-deterministic argument
 - also known as a functor
- with-nd-arg : {A B : Set} \rightarrow (A \rightarrow ND B) \rightarrow ND A \rightarrow ND B
 - apply non-deterministic function to non-deterministic argument
 - separates non-determinism in functions and arguments

- How can we use non-determinism in Agda?
- How about proving something non-deterministic?
- Condition for Sorting:
 sort xs ∈ permute xs

EXAMPLE: SORTED LIST

• Curry insert: ndinsert x [] = [x] ndinsert x (y : ys) = (x : y : ys) ? (y : ndinsert x ys)

 Curry permutation: ndperm [] = [] ndperm (x : xs) = insert x (ndperm xs)

 Agda insert: ndinsert x [] = Val [x] ndinsert x (y :: ys) = (Val (x :: y :: ys)) ?? (mapND ((_ :: _) y) ndinsert x ys)

 Agda permutation: ndperm [] = Val [] ndperm (x :: xs) = with-nd-arg (ndinsert x) (ndperm xs)

 $11 \, / \, 24$

EXAMPLE: SORTED LIST

insert x [] = [x] insert x (y :: ys) = if x < y then (x :: y :: ys) else (y :: insert x xs)
sort [] = [] sort (x :: xs) = insert x (sort xs)

• Equality in Agda:
data
$$_ \equiv _ \{A : Set\} (x : A) :$$

 $A \rightarrow Set where$
refl : $x \equiv x$

on non-deterministic equality: data $_ \in _ \{A : Set\}$ (x : A) : (v : ND A) ightarrow Set where $ndrefl : x \in (Val x)$ left : (l : ND A) \rightarrow (r : ND A) \rightarrow x \in 1 \rightarrow x \in (1 ?? r) right : (l : ND A) \rightarrow (r : ND A) \rightarrow x \in r \rightarrow x \in (1 ?? r)

14 /

Example coin : ND N coin = Val 0 ?? Val 1
OinCoin : 0 ∈ coin OinCoin = left (Val 0) (Val 1) ndrefl

- insert=ndinsert : ... \rightarrow (insert x xs) \in (ndinsert x xs)
 - Either we insert x at the front of xs or somewhere else in xs
 - This is the definition of ndinsert
- sortTheorem : ... \rightarrow sort xs \in ndperm xs
 - reduces to insert=ndinsert xs (sort xs))

Two Types of Non-Determinism

- Set of Values
- Planned Choices

- Abstract over non-determinism
- Curry: f = x ? y
- Agda:
 - f ch = if (choose ch) then x else y

PLANNED CHOICES

- data Choice : Set
 - implementation not important
- choose : Choice $ightarrow \mathbb{B}$
 - select which branch to take
- ullet lchoice : Choice ightarrow Choice
- ullet rchoice : Choice ightarrow Choice
 - produce independent choices for non-deterministic subexpressions

Example: Double Coin

- deterministic function
 double x = x + x
- non-deterministic argument
 coin ch = if choose ch then 0 else 1
- predicate

even 0 = tt

even (suc 0) = ff

even (suc (suc n)) \equiv even n

• Can we prove even (double coin) \equiv tt?

We can prove that
∀ (x : N) → even (double x) ≡ tt
even-double zero = refl
even-double (suc x)
rewrite +suc x x |
even-double x = refl

Example: Double Coin

- finally we abstract over the non-determinism to get our theorem
- even-double-coin : ∀ (ch : Choice)
 → even (double (coin ch)) ≡ tt
 even-double-coin ch =
 even-double (coin ch)
- since **ch** is a parameter this must be true for every non-deterministic choice
- produces very short proofs

- dependant types prove properties about programs
- sometimes those properties are easier to express with non-determinism
- we demonstrated two methods for introducing non-determinism into Agda

23

- Set of Values
- Planned Choices

- applying dependent types to Curry
 - How do we deal with partial functions?
 - How do we deal with laziness?
 - How do we deal with free variables?