
Proving
Non-Deterministic

Computations in Agda

S. Libby
In collaboration with S. Antoy, M. Hanus

Portland State University

September 13, 2016

1 / 24



Why Dependant Types?

prove correctness of programs

(a b : Int) → a + b ≡ b + a

Curry Howard Isomorphism

true if we can write a function with this type

all programs must terminate

loop = loop has any type

2 / 24



Non-Determinism in Agda

Dependant types are hard

Common problem: prove a + b ≡ b + a

some problems are easier to state with
non-determinism

middle ground between proof assistants and
SMT solvers

3 / 24



Functional Logic
Programming

FLP combines functional and logic
programming

langauge: Curry

non-determinism introduced with ? operator
coin = 0 ? 1

coin could have the value of either 0 or 1

programs are evaluated via Narrowing

4 / 24



Dependant Types

Types depend of values

In fact there is no distinction between
types/values/kinds

A type is anything whose type is Set.
Tree a : Set

A value is anything whose type is a type.
leaf 1 : Tree Int

5 / 24



Two Types of
Non-Determinism

Set of Values

Planned Choices

6 / 24



Set of Values

Create a tree of possible values

data ND a : Set where

Val a : ND A

a ?? b : ND A → ND A → ND A

analog in Curry: ? :: a → a → a

7 / 24



Set of Values

mapND : {A B : Set} →
(A → B) → ND A → ND B

apply deterministic function to
non-deterministic argument
also known as a functor

with-nd-arg : {A B : Set} →
(A → ND B) → ND A → ND B

apply non-deterministic function to
non-deterministic argument
separates non-determinism in functions and
arguments 8 / 24



Example: Sorted List

How can we use non-determinism in Agda?

How about proving something
non-deterministic?

Condition for Sorting:
sort xs ∈ permute xs

9 / 24



Example: Sorted List

Curry insert:
ndinsert x [] = [x]
ndinsert x (y : ys) =

(x : y : ys) ? (y : ndinsert x ys)

Curry permutation:
ndperm [] = []
ndperm (x : xs) = insert x (ndperm xs)

10 / 24



Example: Sorted List

Agda insert:
ndinsert x [] = Val [x]
ndinsert x (y :: ys) =

(Val (x :: y :: ys)) ??
(mapND ((- :: -) y) ndinsert x ys)

Agda permutation:
ndperm [] = Val []
ndperm (x :: xs) =

with-nd-arg (ndinsert x) (ndperm xs)

11 / 24



Example: Sorted List

insert x [] = [x]
insert x (y :: ys) =

if x < y
then (x :: y :: ys)
else (y :: insert x xs)

sort [] = []
sort (x :: xs) = insert x (sort xs)

12 / 24



Example: Sorted List

Equality in Agda:
data - ≡ - {A : Set} (x : A) :

A → Set where
refl : x ≡ x

13 / 24



Example: Sorted List

non-deterministic equality:
data - ∈ - {A : Set} (x : A) :

(y : ND A) → Set where
ndrefl : x ∈ (Val x)
left : (l : ND A) → (r : ND A)

→ x ∈ l → x ∈ (l ?? r)
right : (l : ND A) → (r : ND A)

→ x ∈ r → x ∈ (l ?? r)

14 / 24



Example: Sorted List

Example
coin : ND N
coin = Val 0 ?? Val 1

0inCoin : 0 ∈ coin
0inCoin = left (Val 0) (Val 1) ndrefl

15 / 24



Example: Sorted List

insert=ndinsert : ...
→ (insert x xs) ∈ (ndinsert x xs)

Either we insert x at the front of xs or
somewhere else in xs

This is the definition of ndinsert

sortTheorem : ...
→ sort xs ∈ ndperm xs

reduces to
insert=ndinsert xs (sort xs))

16 / 24



Two Types of
Non-Determinism

Set of Values

Planned Choices

17 / 24



Planned Choices

Abstract over non-determinism

Curry: f = x ? y

Agda:
f ch = if (choose ch) then x else y

18 / 24



Planned Choices

data Choice : Set
implementation not important

choose : Choice → B

select which branch to take

lchoice : Choice → Choice

rchoice : Choice → Choice

produce independent choices for
non-deterministic subexpressions

19 / 24



Example: Double Coin

deterministic function
double x = x + x

non-deterministic argument
coin ch = if choose ch then 0 else 1

predicate
even 0 = tt
even (suc 0) = ff
even (suc (suc n)) ≡ even n

Can we prove even (double coin) ≡ tt?

20 / 24



Example: Double Coin

We can prove that
∀ (x : N) → even (double x) ≡ tt

even-double zero = refl
even-double (suc x)

rewrite +suc x x |
even-double x = refl

21 / 24



Example: Double Coin

finally we abstract over the non-determinism
to get our theorem

even-double-coin : ∀ (ch : Choice)
→ even (double (coin ch)) ≡ tt

even-double-coin ch =
even-double (coin ch)

since ch is a parameter this must be true for
every non-deterministic choice

produces very short proofs

22 / 24



Summary

dependant types prove properties about
programs

sometimes those properties are easier to
express with non-determinism

we demonstrated two methods for introducing
non-determinism into Agda

Set of Values
Planned Choices

23 / 24



Future Work

applying dependent types to Curry

How do we deal with partial functions?
How do we deal with laziness?
How do we deal with free variables?

24 / 24


