PROVING

NON-DETERMINISTIC
COMPUTATIONS IN AGDA

S. Libby
In collaboration with S. Antoy, M. Hanus

Portland State University

September 13, 2016

1/24



WHY DEPENDANT TYPES?

@ prove correctness of programs
@e(ab :Int) > a+b=D>b+a
@ Curry Howard Isomorphism
e true if we can write a function with this type
@ all programs must terminate

e loop = loop has any type

2 /24



NON-DETERMINISM IN AGDA

@ Dependant types are hard

e Common problem: provea + b = b + a

@ some problems are easier to state with
non-determinism

@ middle ground between proof assistants and
SMT solvers

3/ 24



FuNcTIONAL LOGIC

PROGRAMMING

@ FLP combines functional and logic
programming

e langauge: Curry
@ non-determinism introduced with ? operator
@ecoin=0171

e coin could have the value of either 0 or 1

@ programs are evaluated via Narrowing

4/24



DEPENDANT TYPES

@ Types depend of values

@ In fact there is no distinction between
types/values/kinds

@ A type is anything whose type is Set.
Tree a : Set

@ A value is anything whose type is a type.
leaf 1 : Tree Int

5 /24



Two TYPES OF
NON-DETERMINISM

@ Set of Values

@ Planned Choices

6 /24



SET OF VALUES

@ Create a tree of possible values

@ data ND a : Set where

eVal a : ND A

ea ??”b : NDA — NDA — ND A

e analogin Curry: 7 ::a — a — a

7/24



SET OF VALUES

e mapND : {A B : Set} —
(A—-B) —-— NDA —» NDB

e apply deterministic function to
non-deterministic argument

e also known as a functor

@ with-nd-arg : {A B : Set} —
(A— NDB) - NDA — NDB

e apply non-deterministic function to
non-deterministic argument

e separates non-determinism in functions and

arguments 3 / 24



EXAMPLE: SORTED LIST

@ How can we use non-determinism in Agda?

@ How about proving something
non-deterministic?

e Condition for Sorting:
sort xs € permute xs

9 /24



EXAMPLE: SORTED LIST

e Curry insert:
ndinsert x [] = [x]
ndinsert x (y : ys) =
(x :y :ys) ? (y : ndinsert x ys)

@ Curry permutation:
ndperm [] = []
ndperm (x : xs) = insert x (ndperm xs)

10 / 24



EXAMPLE: SORTED LIST

e Agda insert:
ndinsert x [] = Val [x]
ndinsert x (y :: ys) =
(Val (x ::y ::ys)) 77
(mapND ((_ :: _) y) ndinsert x ys)

e Agda permutation:
ndperm [] = Val []
ndperm (x :: xs) =
with-nd-arg (ndinsert x) (ndperm xs)

11/ 24



EXAMPLE: SORTED LIST

e insert x []1 = [x]
insert x (y :: ys) =
if x <y
then (x ::y :: ys)
else (y :: insert x xs)

e sort [1 = []
sort (x :: xs) = insert x (sort xs)

12 /24



EXAMPLE: SORTED LIST

e Equality in Agda:
data _=_ {A : Set} (x : A) :
A — Set where
refl : x = x

13/ 24



EXAMPLE: SORTED LIST

@ non-deterministic equality:
data _ € _ {A : Set} (x : A) :

(y : ND A) — Set where

ndrefl : x € (Val x)

left : (1 : ND A) — (r : ND A)
—+x€1l >x¢€ (1 7?7?7r)

right : (1 : ND A) — (r : ND A)
—x€r »>x € (1 77r)

14 / 24



EXAMPLE: SORTED LIST

e Example
coin : ND N
coin = Val 0 ?7? Val 1

0inCoin : 0 € coin
0inCoin = left (Val 0) (Val 1) ndrefl

15 / 24



EXAMPLE: SORTED LIST

@ insert=ndinsert
— (insert x xs) € (ndinsert x xs)

e Either we insert x at the front of xs or
somewhere else in xs

e This is the definition of ndinsert

@ sortTheorem : ...
— sort xs € ndperm xs

e reduces to
insert=ndinsert xs (sort xs))

16 / 24



Two TYPES OF
NON-DETERMINISM

@ Set of Values

@ Planned Choices

17 / 24



PLANNED CHOICES

@ Abstract over non-determinism
o Curry: £ =x 7y

e Agda:
f ch = if (choose ch) then x else y

18 / 24



PLANNED CHOICES

@ data Choice : Set
e implementation not important

@ choose : Choice — B

e select which branch to take
@ 1choice : Choice — Choice
@ rchoice : Choice — Choice

e produce independent choices for
non-deterministic subexpressions

19 / 24



ExaMPLE: DOUBLE COIN

@ deterministic function
double x = x + X

@ non-deterministic argument
coin ch = if choose ch then O else 1

@ predicate
even 0 = tt
even (suc 0) = ff
even (suc (suc n)) = even n

@ Can we prove even (double coin) = tt?

20 /24



ExaMPLE: DOUBLE COIN

@ We can prove that
V (x : N) — even (double x) = tt

@ even—-double zero = refl
even-double (suc x)
rewrite +suc x x |
even—-double x = refl

21 /24



ExaMPLE: DOUBLE COIN

e finally we abstract over the non-determinism
to get our theorem

@ even-double-coin : V (ch : Choice)
— even (double (coin ch)) = tt
even—-double-coin ch =
even-double (coin ch)

@ since ch is a parameter this must be true for
every non-deterministic choice

@ produces very short proofs

22 /24



SUMMARY

@ dependant types prove properties about
programs

@ sometimes those properties are easier to
express with non-determinism

@ we demonstrated two methods for introducing
non-determinism into Agda

e Set of Values

e Planned Choices

23 /24



FUTURE WORK

@ applying dependent types to Curry

e How do we deal with partial functions?
e How do we deal with laziness?

e How do we deal with free variables?

24 /24



