'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Anthony Anjorin

DECLARATIVE MODEL TRANSFORMATIONS
WITH TRIPLE GRAPH GRAMMARS



(@ Boards Jo + E; Bobby Grace [

The Great Kitchen Redesign @ Taco'sOrganizaton % & Public Menu

Done!

To Do

Ideas

Get a new window valence to
match the cabinet colors

Doing Members

— & - o
IER20
= Ola. O o [¢) o

~ Add Members...

Adjust water pressure of the sink

e 1 vote ‘=0/4 [OLCTRIN{IE]

Remove old refrigerator and stove

A
Install new sink

= @1 :=0/10 [OLER-E]

Install new flooring

Pick countertop colors
@® Nov 27,2013

Call contractor

= =1

—

Buy new kitchen cart

Activity

| @ Adam Simms changed the
background of this board.
Jul 7 at 2:06 pm

@ Adam Simms changed the
background of this board.
Jul 7 at 2:05 pm

Install pot rack over the island

O 1 1 i=2/3 :1
o -
3 Tracey Marlow moved Pick
Replace drawer knobs with antique R < : — e faucet to match new sink

L

-
o
-
®
N
B

W ones n' Add a card... from Doing to Done!l.

T 4 . ; _ Jun 23 at 2:43 pm

- E y m Design new kitchen space s Adam Simms renamed this
™ Add a card... ; ”\n y I & 1vote 42 board (from Remodel the

Kitchen). Jun 23 at 2:30 pm

iy,
!
b

|

Buy paint for cabinets

Add a card... B Tracey Marlow joined Pick
faucet to match new sink.

Jun 23 at 1:41 pm

"u ]
"

§

Add a card...

g B} Tracey Marlow joined

Remove old refrigerator
and stove. Jun 23 at 1:40 pm

|

-

Tracey Marlow joined
Replace drawer knobs with

il

‘i

https://trello.com



LTE 16:05 7 68 % Il )

Anthony Anjorin

ACCOUNT

EXPERIMENTAL

Updated Card Back

\_

@ Sync ‘ )

N

Warning: Sync is experimental and may
cause data loss. When enabled, certain
edits are possible without a network
connection. If you notice any problems,
or just have general feedback please
contact us by tapping below. We want to

k hear from you! J

Sync Queue

[ Send Sync Feedback

ABOUT

KM Record Feedback

(B L A a

Boards Search Notifications Account




'L(‘ What is “bx” /box/?

incremental updates

model synchronisation

change propagation
bx = bidirectional transformations 93¢ Propas

consistency restoration

reversible computations

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars



'L(‘ Model-Driven Engineering Vision: 2066

4

domain experts should be

able to solve problems in
their respective domains

.
i, N\
Zz7
T
( =]
using suitable domain \ § |
specific languages s J
\_ =7 4 = p

e Q

o
[ 2 //‘

JC‘X ;

Perdita Stevens: https://youtu.be/sxhGwJkcDul

consistent data exchange powered by
bidirectional transformations (bx)

\_

end users can rely on a

consistent software system

J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars


https://youtu.be/sxhGwJkcDuI

'L(‘ Our Example: A MediWare Application

Med/cation Sé(pp/ y

Managemeni

e ——
(bidirectional)

Transformations

4 p
to ensure that the hospital has

adequate supplies, this prescription
IS mapped to a concrete brand
(e.g., Buffaprin)

\/e/‘/‘f? CLCZZ( [on )
\/Q/ /‘a/ CZZ‘ /‘O/‘)

[Co 4 . T ——
———— Il

b i
=S

= s

Lo

(bidirectional)
Transformations

doctor prescribes a certain
drug via its generic name

(e.g., Aspirin)

\

~

a “patient dashboard”

Jens H. Weber, Simon Diemert, Morgan Price:
Using Graph Transformations for Formalizing Prescriptions and Monitoring Adherence.

ICGT 2015: 205-220

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

\_

application

J



http://dblp.uni-trier.de/pers/hd/d/Diemert:Simon
http://dblp.uni-trier.de/pers/hd/p/Price:Morgan
http://dblp.uni-trier.de/db/conf/gg/icgt2015.html#WeberDP15

(

\

my models contain some Moo/
extra information though!

| only care about
prescriptions, everything
else is irrelevant for me.

\. J

Mec/fddf /on SL( pp/ y

Managemenz‘

S

(bidirectional)
Transformations

& Our Running Example: A MediWare Application

changes | make should be
automatically propagated...

\

J/

se

| do not want to share my whole
model. | only want to share what
IS absolutely necessary.

\

J/

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars



'L(‘ Consistency Maintenance

prescriptions (via
generic names)

mapping to
concrete brands

\.

7

patient information, doctors
In the hospital, ...

\

this must be kept
consistent in both
models!

J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars



'L(‘ MDE Vision: 2066

O
Ceason)

L

.,

[MediSuppIy
A iR,
= | let’s build those wires!
f/:>7 //
= /” \ )

Perdita Stevens: https://voutu.be/sxhGwJkcDul

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars


https://youtu.be/sxhGwJkcDuI

'L(‘ The name of the bx game

AI

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

-

\_

Nodes are models,
arrows are deltas,

dashed outline indicates

derived elements

~N

J

--->| B

10



'L(‘ What's a Model Space?

-

model
.

assigns every
delta a source

M a

STC

all deltas in
model space A

-

J

1d A

-

\_

all models in
model space A

AN

N\

J

\_

~N

Nodes are sets, arrows |
are total functions

J

\ /
\/
A <
A Iso referred to as

trg

a
1 vertical deltas
Y,

~

assigns every
delta a target
model

~

J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars 11



'L(‘ What's a Model Space?

-

SN

\
assigns every

model an idle delta

-

this will be
important later

\_

id \
KMA /\A AA

/

J
irg

\_

~N

Nodes are sets, arrows |
are total functions

J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars 12



'L(‘ What's a Triple Space?

M4

-

\_

all models in
model space A

-

J

STC

trg

-

\_

~N

Nodes are sets, arrows |
are total functions

J

-

/\513
horizontal deltas

(or correspondence
models)

—>

\/
Mp

all models in

model

space B
Y,

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars 13



'L(‘ What's a Triple Space?

modelspace ﬂ

STCA

AW

-

trga

~

[

are total functions

\_

Nodes are sets, arrows |

\

J

sSTc trg

A AR

y

-

A<R>B

trgp

‘ modelspace B

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

14



'L(‘ Symmetric Delta Lenses (SDL)

model spa

{ source

4 )

Nodes are sets, arrows |
are total functions

- J

P9

(

source
deltas

AW

Srca

source ]
models

/\AB X AB target model
\\\\\\\\\\ space

= STC
M 4

~ \ N
/

AAB t?“g MB AB

77\ )/

j trga
),

N

S

correspondence trgp
models - )

AAB X AA

- o

-

\_

~

... with all incidence conditions
iIndicated on previous slide

J

N
an SDL is a pair of functions
R fpg and bpg operating in a
A y N B given triple space
J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars 15



& A MediSoft < > MediSupply Triple and Deltas

nodes are sets, Src trg
arrows are functions M A AAB M B
nodes are models, NP ey ’EI]\ trg(AB) ]
arrows are mappings
src(AB) ]

r . . soulice :HOSpitaITo target _

:Hospital < DosagePlan > :DosagePlan

name = "Springfield
General Hospital"
S |
/doctors patients dosages
pharmaceuticals
‘Doct A\ ‘ _ . v
-LOC1Oor ASDIriN <3ource|e ‘MedicationTo target o Dosagde
name = "Nick Riviera" AL ' Dosage - L
< e \_ ~ ) Brand = Ascriptin
patients prescribed

¥V N y

:Patient
L name = "Lisa" J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

16



& A MediSoft < > MediSupply Triple and Deltas

y

SrcC trg
M 4 Aip Mg
A |« L 1AB | > B
models realised as this is also (in general), a
typed, attributed graphs typed, attributed graph
i r Hospital T \/ﬂ r
. . soulice .Fospital 10 target _
:Hospital < DosagePlan > :DosagePlan
name = "Springfield
General Hospital"
7 |
doctors patients dosages
/ pharmaceuticals
:Doctor ?S i <§ource ‘MedicationTo target o 'DOZa o
name = "Nick Riviera" 2SP ' Dosage : 9 __
< / \_ ~ ) Brand = Ascriptin
patients prescribed
\ V ~ L
‘Patient
name = "Lisa"
\_ W,

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

17



'L(‘ A MediSoft < > MediSupply Triple and Deltas

y

STc trg
M 4 A AR Mp
A |« i | AB [ » B
this mapping can be realised
as a typed graph morphism
r . . soulice :HOSpitaITo target _
:Hospital < DosagePlan > :DosagePlan
name = "Springfield
General Hospital"
S |
doctors patients dosages
/ pharmaceuticals
:Doctor ?S i <§ource ‘MedicationTo target o 'DOZa o
name = "Nick Riviera" / P ' Dosage 5 -d Ag —
\patients prescribed L J u rand = SCflp n
.V L
:Patient
L name = "Lisa" J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

18



:‘Hospital

source

6

name = "Springfield

General Hospital"

:‘HospitalTo

target

DosagePlan

doctors

yd

patients

:Docto-r

pharmaceuticals

N\

name = "Nick Riviera"

:Aspirin

patients

\4
:Patient

name = "Lisa"

-

~

one could also choose to
have vertical deltas on
correspondence models

:DosagePlan

\_ J
:HOSpital < source .HOSpItalTO target > :DosagePIan
DosagePlan
name = "Springfield
General Hospital"
doctors patients dosages
/ pharmaceuticals
:Doctor jspirin source | ‘MedicationTo target _Do:a S

name = "Nick Riviera" ' : J

patients

\

Dosage

A

prescribed

:Patient

name = "Lisa"

Brand = Ascriptin




'L(‘ Specifying SDLs

we specify an SDL?

A+ B \
( > ﬁgiven a triple space, how do

J

Idea 1: Al g A< > B
' i b
Enumerate all squares: - ’%9 b a ! {y‘ :
y r' —yﬂ —yﬂ r' LA
not really feasible... Alle-------- >:L___: :l_A__:é ———————— >| B

but why not?

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars 20



'L(‘ Exhaustive Enumeration

source :HospitalTo target
DosagePlan

:Hospital < >| :DosagePlan

name = "Springfield
General Hospital"
I

doctors patients
/ pharmaceuticals
:Doctor \ —
name = "Nick Riviera" Aspirin
\patients
~N Y
:Patient

name = "Lisa"

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars



source :HOSpitalTO target
DosagePlan

:Hospital < >| :DosagePlan

name = "Springfield
General Hospital"

doctors patients
pharmaceuticals

:Doctor \? —
name = "Nick Riviera" -ASPITN

patients

\4
:Patient

name = "Lisa’ fp g

. . source :HOSpitaITo target _
:‘Hospital DosagePlan > :DosagePlan
name = "Springfield
General Hospital"
doctors patiLnts dosages
/ pharmaceuticals
:Doctor ? — source | :MedicationTo target 'Do\s/age
, — Aspirin S :
name = "Nick Riviera" P Dosage —
— A Brand = Ascriptin
patients prescribed
vV /~
:Patient

name = "Lisa"




Simultaneous, exhaustive enumeration
A

Idea 2: A S g

Enumerate all squares representing QQ
combined fpg and bpg squares bpg

still infeasible, but
quite a nice idea...

Why?

- promotes “symmetrical” thinking and avoids
favouring either fpg or bpg

- easier to enforce “good” lens specifications

- we obviously only have to enumerate half of
all squares (still typically infinitely many)

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars



‘Hospital

name = "Springfield

General Hospital"

:Doctor

<

source

:HospitalTo

name = "Nick Riviera"

doctors patients
pharmaceuticals
N\
:Aspirin
patients V
:Patient

name = "Lisa"

‘Hospital

name = "Springfield
General Hospital"

bpg

source

DosagePlan

target

:HospitalTo
DosagePlan

:DosagePlan

fpg

source

=

doctors patients
‘éf/, pharmaceuticals
:Doctor ? —
. . . -ASPIrIN
name = "Nick Riviera" &
~ .//)3'
patients prescribed
vV ~
:Patient

name = "Lisa"

:MedicationTo
Dosage

t 1
ki >| :DosagePlan
dosages
t \4
arget
> :Dosage

Brand = Ascriptin




Simultaneous, exhaustive enumeration
A

:Hospital

name = "Springfield
General Hospital"

doctors patients

&

:Doctor

patients

name = "Nick Riviera"

pharmaceuticals

source

‘Patient

name = "Lisa"

|

— source | :MedicationTo target :
w Dosage > :Dosage
Brand = Ascriptin

prescribed

TRVl

:HospitalTo
DosagePlan

:DosagePlan

dosages

¢

) —

let's use green (and red) to merge both
corners of the square now in a single diagram

.

J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

25



'L(‘ Simultaneous rules

Idea 3:
specify infinitely many deltas using finitely many rules
(precondition and postcondition graph patterns)

very important idea, as

we’ve finally made the jump
to a finite specification

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

26



'L(‘ Simultaneous rules

:Hospital

<

source

name = "Springfield]
General Hospital"

doctors

yd

patients

:Doctor

" name = "Nick Riviera"i

S\

patients

pharmaceuticals

N\

:‘HospitalTo
DosagePlan

target

:Aspirin

source

< —

A

prescribed

~N Vo

_:Patient

name = "Lisa"

‘MedicationTo
Dosage

target

> :DosagePlan

dosages

v

we just have to represent these
concrete values as variables

N

:Dosage

Brand = Ascriptin

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

27



'L(‘ Simultaneous rules

:Hospital

<

source

about the doctor?

ya

:Doctor

N

patients

why do we care J

/ patients

pharmaceuticals

\

:Aspirin

A

prescribed

N VS

‘Patient

:‘HospitalTo
DosagePlan

target

source | :MedicationTo target
Dosage

>| :DosagePlan

dosages

v

Brand = Ascriptin

we should not fix the
mapping to a brand

\_

~

J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

28



'L(‘ Simultaneous rules

target

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

: source :HOSpitaITO
:Hospital
ospital < DosagePlan
patients\
pharmaceuticals
_\ — source] :MedicationTo target
:Aspirin
4 Dosage
prescribed
vV /~
:Patient

:DosagePlan

dosages

v

but specifying all deltas this

way is still a lot of work ...

29



Simultaneous, monotonic rules
A

Idea 4:

only specify monotonic rules, i.e., only
describing purely creating deltas

source

source

:Hospital |<
patients
pharmaceuticals
:Aspirin
prescribed
\
:Patient

:‘HospitalTo
DosagePlan

target

4 )
composite deltas are

decomposed into steps we
know how to deal with

:MedicationTo
Dosage

target

N 2 o
N
> :DosagePlan
dos%es
>| :Dosage deletion is handled by “rolling

back” rule applications

\

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

30



\ Concrete deltas are derived via rule application

_
| precondition postcondition
(LHS) (RHS)
_l,/ | A~ J
:Hospital S 5%2:82%';'; :DosagePlan \( ‘Hospital 5?2:82?1;% :DosagePlan
| st
. p N
<N — | [ e
[Pepiing [ e (production) <— M Dosage [ >[Dosage |
rule (production sl
g It tructed vi A f
result is constructed via a ¥
match L . '
m< (morphism) disjoint union of the RHS and .
host graph, and a subsequent ¥
gluing of all elements with ¥
common image in the LHS v
l —x// v
. ) . :HospitalTo .
Hospital lszgzgiéill-:w 111111 :DosagePlan name.z(j:z::gfield DosagePlan ‘DosagePlan
nézﬁejé;sﬁg?giﬂ p b) General .IHospitaI"
2 TN w e BT e I I
name =:I"3[\(j)icct|fr|:§;viera" L:Aspirin | name =."Nick Riviera" % . eD(I)Cszéoen ° =
[ S described et
name = "Lisa" . name = "Lisa"
creating delta T

Anthony Anjorin: Declarative Model Transformations with Triple G\

"\
ﬁost graph I

(this construction is a pushout in the\

category of (typed, attributed) triple

graphs and triple graph morphisms




'L(‘ Implicit ignore rules

Idea 5:

p2;

derive some “boring” rules by convention, i.e.,

assume they are specified implicitly

target

_ ‘HospitalTo
-HOS |ta| source

P < DosagePlan

_ .| source :‘HospitalTo

:Hospital DosagePlan

prescri
:Patient

pharmaceuticals

>

:DosagePlan

SSSSSS

:MedicationTo
Dosage

tttttt

:DosagePlan

[

for every element in
the metamodel, that is

not created by any rule

“F

derive a minimal rule
to create every object

J

\ \/
p3:
p4:

J
p5:

| :Hospital | | :Hospital | | :Hospital |
patiﬂs doc&ors pharmieutcals patients
:Patient :Doctor :Aspirin :Patient
P6 p/ p8 P9

and a minimal rule to
create every link

[

these rules are called

ignhore rules as they are

only in one domain

\

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

32



| h L
'L(‘ From Triple Graph Grammars to Lenses

-

N

R

MediSoft <«

> MediSupply
_J

!

\
ser supplies a triple space

(via a triple of metamodels)

J

+

\_

p1:

:‘Hospital

‘Hospital

:HospitalTo
DosagePlan

SSSSSS

aaaaaaaaaaaaaaa

p2: N

prescr
:Patient

:‘HospitalTo
DosagePlan

tttttt

:DosagePlan

SSSSSS

:MedicationTo
Dosage

tttttt

:DosagePlan

sssssss

/ and a finite set of monotonic,

\Lsimultaneous triple rules, i.e., a

triple graph grammar

\

J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

33



| h L
'L(‘ From Triple Graph Grammars to Lenses

a TGG tool does
some “magic”

R
[MediSoft 4> MediSupply}

eMoflon and produces a
symmetric delta lens!

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

34



Transformation Completeness: Geometric intuition
A p

such a source delta
IS inconsistent

TGG generates a set
C of consistent triples

such a source delta
IS consistent

there are of course many
other (inconsistent) triples

fpg is transformation complete, if it is total on the set
of all consistent triples and consistent source deltas

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars 35



Transformation Correctness: Laws
A

means that a is
consistent

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

r.C r.C
A |< >| B A |< >
i ‘ b
a /&9 bi a PY b
|
v / —y--| _y..' /.
A" Cg e--ﬁ-:-q-->:B ! LA :e--r--'-q-- B': Cr

36



'L(‘ Stability: Laws

don’t do anything for
the “idle” delta
\_ /

r:C
A |< >
f
id /ﬁg id
v r:C .
Al<-------- >

-

\_

sounds trivial, but it rules

out “batch mode” TGG tools

~

J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

37



'L(‘ Stability: Laws

A |= > B A |=

id %{g id i id i b{?\ id
8 ) y r:C _11’_1 _ll'_1 rC \
a batch forward transformation Ale-------- >[_B_ | :lA_ -

only takes the current source
model as input

J

w and extends it to a
fwd e o consistent triple

Al = [A]e---om--- > B

r:.C after target changes that
do not affect consistency

Stability is  id y
violated B
b*|

fwd Y r.C -yﬂ

A H Ale--—------ > B* !

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars




:‘Hospital

name = "Springfield
General Hospital"

doctors patients

pharmaceuticals

:Doctor

name = "Nick Riviera"

patients prescribed

:Patient
name = "Lisa"

:Hospital

name = "Springfield
General Hospital"

doctors patients

pharmaceuticals

:Doctor

name = "Nick Riviera"

patients prescribed

:Patient
name = "Lisa"

fwd

—

—

source

:Doctor

name = "Nick Riviera"

ECT

:Hospital <—
name = "Springfield
General Hospital"
doctors patients
pharmaceuticals
patients prescribed
:Patient

name = "Lisa"

:HospitalTo

target

DosagePlan

source

:MedicationTo
Dosage

target

:DosagePlan

dosages

| :Dosage |

:Doctor

name = "Nick Riviera"

( :DosagePlan
entering a concrete
)
: d brand doesn’t affect
consistency Dosags
\ / Brand = Ascriptin
b*
. . source :HospitaITo target .
‘Hospital DosagePlan :DosagePlan
name = "Springfield
General Hospital"
doctors patients dosages
pharmaceuticals
2 souree | :MedicationTo target
<— b | :Dosage
osage
| /
patients prescribed
:Patient

name = "Lisa"

but cannot be retained by a
batch transformation




'L(‘ Other laws

| 1. Hippocratic_ness

2. (Weak) Undoability

3. (Weak) Invertibility

4. Functional Behaviour
‘5. Domain Correctness
6. Domain Completeness

7. Local Completeness

in general TGG-based synchronisation
does not obey any of these laws ...

e —— e e —71;

... but suitable restrictions can be posed to

determine adequate subclasses of TGGs

R e . R

o ————————— e

TGGs offer a “playground” for exploring
formal properties and how to guarantee
them (statically or dynamically)

. . A

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

40



'L(‘ Running Example

R
[MediSoft 4> MediSupply}

+
p1 : ‘Hospital |€—= Isg(s):gg%llzon =% 5| :DosagePlan
:Hospital - [:)g::gg%l;on bl >| :DosagePlan
patients
pharmaceuticals dosages
2. 'Me?‘jication *$"° | :MedicationTo target o _D‘ll
p . : 7 Dosage .-0sage
prescrﬁed
:Patient

\_ _J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars



'L(‘ Running Example

R
{MediSoft 4> MediSupply}

~ ™)
= L soure :HospitalTo t .
p 1 Hospital DosagePlan DosagePlan

. - \ source [ :HospitalTo \ target .
:Hospital DosagePlan :DosagePlan
pat ".s<
dosages

pharmaceuticals

:Hospital

<

source

name = "Springfield
General Hospital"

yd

doctors patients

:Doctor

name = "Nick Riviera"

:Ibuprofen

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

N

patients

N

pharmaceuticals

source

:Aspirin

-

:HospitalTo
DosagePlan

T~

A

prescribed

:Patient

<€ prescribed ==

name = "Lisa"

:MedicationTo
Dosage

target
: :DosagePlan
dosages
target
> :Dosage

Brand = Ascriptin

42



Running Example: Re-Alignment

L\

R
{MediSoft 4> MediSuppIy}

- :HospitalTo target
:Hospital < DosagePIan == :DosagePlan
name = "Springfield
+ General Hospital"
doctors patients dosages
pharmaceuticals )
—~ ~ :Doctor Ao l<—_| :MedicationTo target :
rame ok o] | CAPTN<—] Thocage o< nes
' DosagePlan : rand = Ascriptin
patients prescribed p
, )
:Patient
- )
_n n
:Hospital [ [[:;Z:Si;i’ll.::]‘ EEEEEE ﬂgePlan name = Llsa .
p2: (]
0
:Patient
B - \/
. :HospitalTo target
‘Hospital " DosagePIan ki :DosagePlan
name = "Springfield
. General Hospital"
r:C :
A < > B pharmaceuticals ;ctors patients dosages
| :Doctor 5
- — :Dosage
fAIgn | name = "Nick Riviera" 9 —
: Brand = Ascriptin
. patients
a id | _
| :Patient
Vv \1/ :Ibuprofen |«€= prescribed = Name = "Lisa"
r T
A' , B!
< - ------- > |
L — —

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars



Running Example: Rollback

L\

R
{MediSoft 4> MediSupply}

‘Hospital < Souree -HospitalTo e :DosagePlan
DosagePlan
+ name = "Springfield
General Hospital"
—~ N pharmaceuticals /dOCtOI'S patients dosages
name = "Nick Riviera" .Dosage. .
Brand = Ascriptin
patients
Hospta | | o == | oosagepin :Patient ‘
02 T ; aaaaaaaaaaaa Az :Ibuprofen |«€= prescribed = name = "Lisa" ’
source .
(]
:Patient .
_ _/ 0
0
' \/
‘Hospital < Souree -HospitalTo oroe :DosagePlan
- DosagePlan
T name = "Springfield
A < > B General Hospital"
| | pharmaceuticals doctors patients
| Del
N e I A :Doctor
: : b name = "Nick Riviera"
| | patients
| |
\V A \4 :Patient
- —/\— 1 /'/5 . O - —/\— 1 _Ib f ny ; n
| | . | | :Ibuprofen name = "Lisa
A< > B
L= L= —

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars



'L(‘ Running Example: Re-Translation

R
{MediSoft 4> MediSuppIy}

__ source :HOSpitalTO target
DosagePlan

:Hospital

:DosagePlan

name = "Springfield
+ General Hospital"

pharmaceuticals doctors patients

:Doctor
name = "Nick Riviera"

patients

:Patient
name = "Lisa"
0

0
:Patient .

:Ibuprofen

\_ - v

<

‘Hospital source [:)g(s):ggﬂgon e :DosagePlan
name = "Springfield
~ General Hospital"
A < T : C > B pharmaceuticals doctors patients dosages
: : :Doctor target 5
— — :Dosage
I I name = "Nick Riviera
I | fAdd | 1 patients
a' b ~
: : :Patient :Medication
| | :Ibuprofen |«€= prescrived — name = "Lisa" ToDosage
_y_.l 1 . _y_.l source
| - r . C | B' I
L A Ié ———————— > |
L L———

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars



'L(‘ What do TGG tools do?

A B

fAlgn

1. (Re-)Alignment: ; /XK d,

_ y

e

A r B
. | Del .
g P = 2. Rollback: N b
. ) o C .“\i:“,
fpg : A > B

a /& b : 1{1 r:.C l?
v e _Y_, 3. (Re-)Translation: = ’@d "
A le-------- >, B' | / !
b=-—- :_A'_ié——f—:—c———%_é'_‘:

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

46



'L(‘ Synchronisation Algorithm: Geometric Intuition

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

47



N

Some remarks on implementation
A p

/

w

easy: TGG tools represent

\

correspondence links
explicitly so can just delete
“dangling” links

J

I
<--

)
Q
-

e ]

=
!
!

>

2 [H]<
)
¥

®
< —-—--{
S

v . i

v e Y YA J
Al -------- > B' | i fAdd |
L - — a' : /& :b'
v v
A :e--f-'-C--->:lB |

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars 48



Some remarks on implementation
A p

)
L/%
Q
-
a

B hard: requires a complete
Del | remarking of all elements
&
v

>

2 [H]<
)
¥

(very inefficient), most TGG

; Qtools employ some kind of
~ o ~= optimisation technique
v e -V P G i e
1 I [ | | |
Al -------- > B . fAdd
| I, al : & : bl
v v
A :e--f-'-C--->:lB i

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars 49



Some remarks on implementation
A p

r:C
A |< >| B
fAlgn
a /& id |
r:.C |
\/ - v
A |< >| B A
| T l T
f ! N Del P
| | |
V A V
- - ==
Y r'.C i A < 4 >
Alle-------- > B' | i fAdd |
L - — a' i /& I b
: : , A
v : . ( easy: just apply TGG rules
A 1:6__[_._0___9: B | wherever they match
T """ | (typically quite efficient)

but: requires backtracking in
general, so most TGG tools pose
some (rather technical) restrictions

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars




'L(‘ Proving stability

r:C r:C

e A |< >| B A |<

a TGG tool that actually | :

iInspects the delta to be id /@Q id | id | bpg id
propagated is trivially stable ! !
\ y r:C - jl’_1 V. : r:C v

Ale------—-- > : : :é ————————
4 )

so incremental TGG tools are
stable, batch TGG tools are not

o J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars




'L(‘ Proving correctness

r:C
A |< > B
fAlgn
a & id |
\ _ v
A l< . C > B Al e ’l“ I B
fpg | N Del EA d hard: show that Del A
4 > Q, /& ib (whatever strategy is applied)
Lo Y, v y J always produces a consistent
Tae il TE e 7€ L[FRK_ imormediae resul
Sl il s[5 intermediate resu y
: ﬁid |
| o
Yo b D
(A S e > B easy: in each step, a TGG rule is

applied, so if translation succeeds,
the result is consistent by definition

J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

52



'L(‘ Proving completeness

(but very inefficient)

hard: show that translation process
\_ succeeds without backtracking Y.

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars 53



'L(‘ Some closing remarks on TGGs

r
A [< >| B

~

Af ( completeness is achieved by
Interpreting every delta that is not
N\ ¥ | already explicitly fixed by the TGG .

... as a rollback to a state from A' T

which a delta to the final state can L---

be derived from the TGG
\_ J

a

A

-

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars



'L(‘ Some closing remarks on TGGs

A
/
A a
Y
A

\/\
.

A

.

the result is not
always what is

“expected”

J

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

95



'L(‘ Some closing remarks on TGGs

-

.

In the worst case, this can

re-translation (just as bad as
batch, and less efficient!)

@f—
.
/\

result in a complete rollback and

AI

J

—
~-§
~

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

56



'L(‘ TGGs in relation to other bx approaches

Implementation
Effort

{ PL community \{

J

N

{ SE commuriy_}

[ —

[ Solver-Based ]

|

Putback-
Based

Get-Based

|

Combinator-
Based

o

(GT community J

Control

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

S7



'L(‘ TGG Research Challenge (one of many! see [1])

A - ~

( Putback-
Based
( Get-Based

Combinator-
Based

Implementation
Effort

(. )
[ Solver-Based ]
" W,

Control
[1] 20 Years of Triple Graph Grammars: A Roadmap for Future Research. A Anjorin, E Leblebici, A Schurr - ECEASST, 2016

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars


https://scholar.google.com/scholar?oi=bibs&cluster=14288618022898365866&btnI=1&hl=de

'L(‘ Being declarative is good

Consistent Model Generator
d (e.qg., for test input data)

a TGG only declares “consistency”

and not, e.g., how to restore it iy

X

' 4

Consistency Checker
(e.g., as a test oracle)

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

59



'L(‘ Things | would do right now if | could clone myself

» Further explore synergy between TGGs and
logic/constraint programming (cf., e.g., [2,3])

+ Graph transformation is functional (cf., e.qg., [4])!
Especially promising for implementing static
analyses (cf., e.g., [5]).

+ Continue work on bx and TGGs (cf., e.g., [1]).

[1] Anjorin, A., Leblebici, E., Schurr, A.: 20 Years of Triple Graph Grammars: A Roadmap for Future Research.
2016, Vol 73 pp. 1-20, ECEASST

[2] Anjorin, A., Varro, G., & Schurr, A.: Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques.
BX 2012.

[3] Erhan Leblebici: Towards a Graph Grammar-Based Approach to Inter-Model Consistency Checks with with Traceability Support.
BX 2016.

[4] Scott West, Wolfram Kahl: A Generic Graph Transformation, Visualisation, and Editing Framework in Haskell.
GTVMT 2009

[5] Anjorin, A., Leblebici, E., Schurr, A., & Taentzer, G. A Static Analysis of Non-confluent Triple Graph Grammars for Efficient Model
Transformation. ICGT 2014.

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars

60


https://scholar.google.com/scholar?oi=bibs&cluster=14288618022898365866&btnI=1&hl=de

'L(‘ Things you should check out

|

a bx repository with quite
a few bx examples

events and venues

overview of bx J

www.bx-community.wikidot.com

related bx tools
and papers

J

-

recent bx summer school with

for the TGG examples, ...

~

extensive slides, a virtual machine

J

[
actively developed TGG
tool with an extensive

handbook (for beginners)
-

www.emoflon.org

http://www.cs.ox.ac.uk/projects/ticbx/ssbx/

Anthony Anjorin: Declarative Model Transformations with Triple Graph Grammars 61


http://www.bx-community.wikidot.com

