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We present a framework for building CLP languages with symbolic constraints based on
microKanren, a domain-specific logic language shallowly embedded in Racket. A language
designer provides the names and violation conditions of atomic constraints. We rely on
Racket’s macro system to generate a black-box constraint solver and other components of the
microKanren embedding. The framework itself and the implementation of common Kanren
constraints amounts to just over 100 lines of code. Our framework is both a teachable
implementation for constraint logic programming as well as a test-bed and prototyping tool
for constraint systems.

1 Introduction
Constraint logic programming (CLP) is both an extension and a generalization of traditional
logic programming – it provides a way to extend logic programming languages with new con-
straints and simultaneously situates pure logic programming as an instance of CLP, in which
unification is itself the solver. Constraint logic programming has proven itself a highly declara-
tive programming paradigm applicable to a broad class of problems [18]. Jaffar and Lassez’s CLP
scheme [16] generalizes the model of logic programming to include constraints over particular
problem domains (i.e. structures), and the scheme explicitly separates constraint satisfiability
from the inference, control, and variable management.

Since at least the development of this theoretical foundation, implementers have engendered
many CLP languages of a wide variety. Traditionally these languages are extensions of Prolog
but this is by no means the only choice. Such languages’ implementations often closely couple
inference and constraint satisfaction to leverage domain-specific knowledge and improve perfor-
mance. This specialization and tight coupling could force an aspiring constraint implementer
to rewrite a large part of the system to integrate their additions. LP metainterpreters, another
common approach to implementing CLP systems, are unsatisfying in different ways. The user
pays some price for the interpretive overhead, even if we use techniques designed to mitigate
the cost [25]. Moreover, implementing intricate constraint solvers in a logic language can be
unpleasant, and performance concerns may pressure implementers to sacrifice purity.

We encountered still different issue in extending Kanrens with constraints. miniKanren [12] is
a pure logic language implemented as a purely functional, shallow embedding in its host language,
here Racket [8]. microKanren is our approach to demystifying some of the complexities of
miniKanren implementations. We sought to build a short and clear LP language implementation
readable by functional programmers. We separate inference and unification from the surface
syntax, allowing functional programmers in call-by-value languages to implement the core logic
programming features without the syntactic sugar. The reference implementation is just over
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50 lines long, and since its initial release others have built upwards of 50 implementations in
more than 25 host languages (see miniKanren.org.) There are small syntactic differences between
the miniKanren and microKanren languages and their various implementations. We elide these
details and describe them collectively as “Kanrens” unless otherwise important. In either case a
Kanren embedding gives functional programmers access to logic programming in languages that
do not natively support it.

As originally implemented, microKanren’s only constraint is syntactic equality. Many of the
most interesting typical uses of Kanrens require symbolic constraints [6] beyond equality. The
most commonly used Kanren language augmented with symbolic constraints implementation
balloons to upwards of a thousand lines of code, and seem somewhat baroque compared to
the 50 line microKanren. Some of this added heft comes from the constraint solving, and the
remainder is simplification and answer projection. Adding each new constraint requires utilizing
domain knowledge on an ad-hoc basis, and complicates constraint solving, simplification, and
answer projection. This situation calls out for a different design and decomposition of the
problem.

We suggest a framework for building microKanren-like languages with symbolic constraints.
Our framework uses Racket’s macro system to generate shallow functional embeddings of logic
languages augmented with constraints. The language designer provides the names of the atomic
constraints—Racket identifiers—and the conditions for constraint violations in the form of pred-
icates. For us, the definition of a constraint system is the set of constraint interactions that cause
failure. Our macros generate a black-box constraint solver, as well as other components of the
embedding. The languages generated by our framework return the bag of constraints in an
unsolved form. We intend to extend the framework to also simplify constraints to a canonical
form, eliminate redundancies, and project answers with respect to initial query variables. In the
extension we envision, the language designer describes rewriting-rules for constraint sets, and
the framework does the rest. We envision using our framework as a tool for rapidly prototyping
constraints and CLP languages, and also as an educational artifact for functional programmers.

We describe the Kanren term language, the domain of our symbolic constraints, in Section 3.
We use this framework to implement common miniKanren constraints in Section 6, as well as
suggestive new ones in Section 7. Our untyped shallow embedding gives the language designer a
fair amount of flexibility, and we describe future directions and alternate design choices in Sec-
tion 9. This paper is a literate document; it contains the full implementation of our framework
in Section 5, and we provide the inference engine in 22 lines of code as an Appendix. The com-
plete framework and the implementation of common miniKanren symbolic constraints comprise
just over 100 lines – a marked decrease in line count over similarly featureful implementations.
We also provide our full implementation at github.com/jasonhemann/constraint-microKanren
alongside several syntactic extensions. To recapitulate, our contributions include:

• A macro-based framework for generating pure, functional, shallowly-embedded CLP lan-
guages in Racket

• The implementations of several symbolic constraints common to Kanren

• The implementations of several more suggestive and useful symbolic constraints

• A literate presentation of the complete framework and the implementation of our con-
straints.

www.miniKanren.org
https://github.com/jasonhemann/constraint-microKanren
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2 Background
We do not expect any miniKanren background or experience of the reader; a logic programming
background is enough. We briefly adumbrate here the necessary background material. We
review some features and contrast miniKanren’s syntax and behavior to that of Prolog. The
interested reader should consult one of several references and tutorials for further details [10].

Although Kumar [24] has formally specified miniKanren’s syntax and given several seman-
tics, implementers have been encumbered by neither, and none of the more widely used im-
plementation obey these specifications. Instead, miniKanren is better described as a family of
related logic programming languages, traditionally shallowly embedded in a declarative host lan-
guage, most of whose semantics are informally specified by direct appeal to their host languages’
features. Our embedding inherits much of the syntax and structure of it’s host. Implementa-
tions’ concrete syntax varies from host to host because of the shallow embedding. Different
miniKanren implementations often provide different extensions and operators, as happens with
Prologs. The traditional Prolog definition of a naïve reverse (nrev) is syntactically analogous to
the miniKanren version defined using pattern-matching syntax [20].

(defmatche (nrev l₁ l₂)
nrev([],[]). ((() ()))
nrev([H|T],L2) :- nrev(T,R), append(R,[H],L2). (((,h . ,t) ,l₂)

(fresh (r)
(nrev t r) (append r `(,h) l₂))))

Rather than using case to distinguish constants and variables, in miniKanren symbol in
quoted (') data are constants and are otherwise considered variables. In pattern matches, we
precede variables by an unquote (,), and terms are otherwise considered constants. Pairs are
destructured as (,α . ,β) rather than [α|β]. Predicates are defined at once as a collection of
clauses, and we do not require the name of the predicate in every clause. Unlike in Prolog, the
programmer must explicitly introduce auxiliary variables using the fresh operator.

Below is the translation of the nrev into microKanren.
(define-relation (nrev l₁ l₂)
(disj (conj (== l₁ '())

(== l₂ '()))
(call/fresh (λ (h)

(call/fresh (λ (t)
(conj (== `(,h . ,t) l₁)

(call/fresh (λ (r)
(conj (nrev t r)

(append r `(,h) l₂)))))))))))

The operators conj and disj provide binary conjunction and disjunction; call/fresh in-
troduces scope, relying on Racket’s λ for lexical binding. The operator == is microKanren’s
first-order syntactic equality constraint. Finally, the operator define-relation defines predi-
cates and plays a part in the interleaving. Syntactically, the language resembles Spivey and
Seres’s Haskell embedding of Prolog [28]. Modulo differences in syntax, both are essentially a
completed predicate, à la Clark [5].

We can layer the miniKanren syntactic sugar over this somewhat verbose core syntax with
about 45 lines of Racket macros. The microKanren approach is now the most common way to
implement miniKanren.
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The miniKanren equivalent of the ?- prompt is the run operator. The run operator takes a
number (here 1), a variable name (here q), and a query to execute. The run operator returns a
list of at most that many answers to the query, simplified and answer projected [19] with respect
to the query variable. The following queries return similar answers.

?- findnsols(1,L2,nrev([a,b,c],L2),Q). > (run 1 (q) (nrev '(a b c) q))
Q = [[c,b,a]] ? '((c b a))

Prologs default to DFS, whereas Kanrens rely on an unguided, interleaving depth-first search,
based on Kiselyov et. al’s Logic monad [23], that is both complete and more useful in practice
than are BFS or IDDFS. This style of search is not currently available in any logic language of
which we are aware besides miniKanren. This complete, more efficient search makes a purely
relational approach to programming more practical, as we can query pure, all-modes relations
more effectively. This in turn reduces the need for both non-logical operators and predefined
predicates.

For instance, Kanrens have no equivalent to Prolog’s is operator. Instead, the Kanren
arithmetic system is built from all-moded relations built from bit-adders up, without any use
of non-logical operators [22]. The add used in the following query is 3-place addition relation
and log is a four-place logarithm relation. miniKanren prints the answers as little-endian binary
numbers. In the first, we return two answers, and indeed 0+0 = 0 and 1+1 = 2. In the second,
we return a list of the only answer (#f #t #t), as 14 = 23 +6.

> (run 2 (a b) (add a a b))
'((() ()) ((#t) (#f #t)))
> (run* (q) (log (#f #t #t #t) (#f #t) (#t #t) q))
'((#f #t #t))

These relations run in all modes, and with our interleaving search appropriately terminate.
This declarative arithmetic is efficient enough to be useful in practice [2]. Kanrens do not cur-
rently support arithmetic over real or floating-point numbers, and heavily numeric computations
are not Kanrens’ strong suit. Instead, this all-moded logic programming technique inspires non-
traditional sorts of problems. Such miniKanren programming examples include a typechecker
that also behaves as a type inhabiter [26], an automated theorem prover that doubles as a proof
assistant [3], and a programming-language interpreter that also serves as a quine generator [4].
Several such examples are available in browser at tca.github.io/veneer/examples/editor. Con-
sider as a representative example eval, a relational interpreter for a Racket-like language. The
relation holds between an expression e, an environment ρ, and a value v when the value of e
in ρ is v. To search for a quine, we query eval for an expression that evaluates to its listings
(source code). The result is a valid Racket quine.

> (run 1 (q) (eval q '() q)
'((((λ (_.0) (list _.0 (list 'quote _.0))) '(λ (_.0) (list _.0 (list 'quote _.0))))

(=/= ((_.0 closure)))
(sym _.0)))

miniKanren prints fresh variables as _.n in projected answers. The above answer is subject
to several constraints: _.0 must be a symbol other than closure. Historically, miniKanren
programmers develop new constraints in response to challenges that arise in the course of solving
such problems.

http://tca.github.io/veneer/examples/editor.html
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3 Kanren terms and constraint domain
The Kanren term language contains symbols, logic variables, Booleans, the empty list (()), and
cons pairs of the above. We may imagine the term language has a single, implicit, uninterpreted
functor tag, cons/2. In the interest of simplicity we reserve non-negative integers as logic vari-
ables. Our syntactic equality constraints, built with == are simply equations over the Herbrand
domain. The additional common Kanren constraints are (binary) term disequality, written =/=,
(binary) subterm discontainment, written absento, and the unary domain constraints symbolo,
and not-pairo1. These last two declare the constrained term a symbol or a non-pair respectively.
We demand that atomic constraints be applicable over the entire term language. Similarly, we
expect that for all constraints c and term sequences t1 . . . tn, if c(t1 . . . tn) holds, then for any σ ,
if u1σ = t1 ∧ ...∧unσ = tn, then c(u1 . . .un) also holds. That is, our disequality constraints corre-
spond to the behavior of dif/2 rather than \==, and other constraints behave analogously. These
requirements carry important properties of the symbolic constraints in which we are interested
and simplify the grammars of the generated languages.

In addition to the usual benefits, our constraints allow us to compress what would be multiple
answers (potentially infinitely many) into single finite representations. Consider for instance, the
absento constraint. An absento constraint holds between two terms x and y when x is neither
equal to, nor a subterm of y. With just =/= constraints, we can in general only express this
relationship in the limit, e.g. an infinite conjunction of disequalities between the fresh variable
y and all possible terms x from which it is absent. With the absento constraint we can represent
this relationship finitely.

4 Constraint framework restrictions
Our framework builds embedded constraint logic languages. The language designer gives the
constraint names (constraint relation symbols), and the conditions the violate constraints via
predicates to test for invalid sets of constraints. From these, the framework will generate the
microKanren (and thus miniKanren) constraint operators and a constraint solver automatically.
To specify these interactions via predicates in some sense is to define the constraints themselves.
They are a declarative, functional specification of what it means to violate these constraints.
Constraint-violation predicates, qua predicates, are by definition total functions. As such, the
solver for the constraint system (invalid?, defined in Section 5) is also total.

We provide ==, representing syntactic first-order equality, with every constraint system, and
implement it via unification with the occurs? check. We fix this particular equational theory
because of our intended use cases for the generated languages (e.g. sound type inference in a
simply-typed language).

We require the resultant constraint solver to be well-behaved [17]. This means it is logical—
that is, it gives the same answer for any representation of the same constraint information (i.e.,
regardless of order, redundancy, etc). It is also monotonic—that is, for any set of constraints,
if the solver deems the set invalid, adding additional constraints cannot produce a valid set.
Therefore, when adding a new constraint-violation predicate, a language designer is not required
to modify older ones. Such a redesign may, however, clarify these violations. Presently, we do

1Implementations also often include a numeric domain constraint numbero. We omit numeric constants and
also this constraint.
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not check any of the preceding restrictions and requirements.

5 Constraints framework implementation
In this section we describe the implementation of our framework. We model the constraint store
with a persistent hash table. To add a new type of constraint to the embedded language is to
create a field in the hash table. We use the constraint’s name as the key for that constraint’s
field in the store. We construct the initial state with something akin to make-initial-state
below:

(define-syntax-rule (make-initial-state cid ...)
(define S₀ (make-immutable-hasheqv '((==) (cid) ...))))

The Racket primitive define-syntax-rule builds a macro. This macro transforms an occur-
rence of the pattern, an expression beginning with make-initial-state followed by zero or more
identifiers into an instantiation of the macro’s template. This template creates the definition
of S₀ as an immutable hash table with == and each of the provided constraint identifiers as
keys associated with empty lists (()). Since constraint identifiers are unique, each field will
have a distinct key. One can also view these different fields as distinct stores for each type of
constraint [29]. We use something like make-initial-state to construct the initial state when
we make a constraint system. The hash table is immutable to allow structure sharing across
different extensions of the same state, and we rely on the host language’s garbage collection to
free memory.

> (define == (make-constraint-goal-constructor '==))
...

In the embedding, we define globally each atomic constraint as the result of invoking make-
constraint-goal-constructor. We use the name of the atomic constraint as its key in the store.
The function make-constraint-goal-constructor takes a field in the store and returns a function
accepting the correct number of term arguments. This is the definition of an atomic constraint
in our embedding.

(define (((make-constraint-goal-constructor key) . terms) S/c)
(let ((S (ext-S (car S/c) key terms)))

(if (invalid? S) '() (list `(,S . ,(cdr S/c))))))

Invoking this constraint with terms is a goal: a function expecting a state and returning a
stream of states. To evaluate a constraint we extend the state and test for consistency. If the
extended constraint store is consistent, we return a stream of a single state; if not, we return the
empty stream. Once added, constraints are not removed from the store. This decision means
the size of the constraint store and the cost of checking constraints grows each time we encounter
a constraint in the execution of a program. In Section 9 we suggest improvements.

To constrain a term(s) during the execution of a program is to add the constrained term(s)
to the corresponding field of the store. The ext-S function takes the store, the key, and a list
of terms. The ext-S function adds those terms, as a data structure, to a list of such structures.
By consing all of the terms together, hash-update creates the data structure.

(define (ext-S S key terms) (hash-update S key ((curry cons) (apply list* terms))))
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We check consistency with invalid?. make-invalid? builds the definition of invalid?. The
language designer provides make-invalid? a list of the names of atomic constraints (Racket iden-
tifiers). The designer also provides a sequence of predicates that check for constraint violations.
Each predicate takes a substitution and returns true if it detects a violation. The constraint
identifiers are free variables of the predicates; the expansion of make-invalid? will bind them.
The result of make-invalid? is a predicate that tests if a store is invalid.
(define-syntax-rule (make-invalid? (cid ...) p ...)
(λ (S) (let ((cid (hash-ref S 'cid)) ...)

(cond ((valid-== (hash-ref S '==)) => (λ (s) (or (p s) ...)))
(else #t)))))

The first constraint we check is ==. If this constraint is consistent, the result is a substitution.
Assuming this field is valid, we pass the resulting substitution as an argument to the constraint-
violation predicates.

Because our framework includes the implementation of the constraint == and provides ==
in every generated constraint system. The == constraint is special because when testing for
the violation of other constraints, we treat terms of the language as classes quotiented by their
meaning under the substitution. The valid-== function below and its associated help functions
are also included with the framework. The valid-== function expects a list of cons pairs of terms
to unify with each other. We provide unify’s definition in the Appendix.
(define (valid-== ==)
(foldr (λ (pr s) (and s (unify (car pr) (cdr pr) s))) '() ==))

We used the phrase “something akin to” when describing make-initial-state. This is the
main syntactic form for building constraint systems. We build the entire constraint system
and embedded language with one invocation of make-constraint-system. This new syntactic
form takes the same parameters as does make-invalid?. It builds invalid?, the initial state,
and all the constraints themselves. The result is a constraint system; together with microKan-
ren’s control infrastructure (see Appendix) this yields a full implementation of microKanren-like
CLP language. To construct a microKanren with just equality, the language designer invokes
make-constraint-system with an empty list of constraint identifiers and no constraint-violation
predicates.
> (make-constraint-system ())

The definition below uses Racket’s syntax-parse [7], a more sophisticated macro system. We
pattern-match on the syntax argument, and the hash (#) begins the definition of the syntax
template. We use syntax-local-introduce to introduce three new identifiers into lexical scope;
the remaining constraint identifiers are already scoped.
(define-syntax (make-constraint-system stx)
(syntax-parse stx

[(_ (cid:id ...) p ...)
(with-syntax ([invalid? (syntax-local-introduce #'invalid?)]

[S₀ (syntax-local-introduce #'S₀)]
[== (syntax-local-introduce #'==)])

#'(begin (define invalid? (make-invalid? (cid ...) p ...))
(define S₀ (make-immutable-hasheqv '((==) (cid) ...)))
(define == (make-constraint-goal-constructor '==))
(define cid (make-constraint-goal-constructor 'cid))
...))]))
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This macro is the primary driver of our framework. The preceding code and the 22 line Appendix
comprise the entire implementation.

6 Implementing a constraint system
Next, we make further the use of our framework. We implement a series of constraint-violation
predicates with some associated help functions and use those predicates to generate a constraint
system of common symbolic constraints. We develop these constraints and their predicates one
at a time.

Beyond ==, the typical Kanren contains four other constraints: =/=, absento, symbolo, and
not-pairo. We discuss the predicates required to implement these constraints one at a time.

We first add a predicate to test for a violated =/= constraint. This predicate searches for
an instance where, with respect to the current substitution, two terms under a =/= constraint
already unify. In that case, the =/= constraint is deemed violated.

> (make-constraint-system (=/= absento symbolo not-pairo)
(λ (s) (ormap (λ (pr) (same-s? (car pr) (cdr pr) s)) =/=))
...)

We implement this predicate in terms of a help function same-s?. If the result of unifying
two terms in the substitution is the same as the original substitution, then those terms were
already equal relative to that substitution.

#| Term ⨯ Term ⨯ Subst ⟶ Bool |#
(define (same-s? u v s) (equal? (unify u v s) s))

The next predicate checks for violated absento constraints, using the auxiliary predicate
mem?. The predicate searches for an instance where, with respect to the substitution, the first
term of a pair already unifies with (a subterm of) the second term. In that case, we deem the
absento constraint violated.

> (make-constraint-system (=/= absento symbolo not-pairo)
...
(λ (s) (ormap (λ (pr) (mem? (car pr) (cdr pr) s)) absento))
...)

The predicate mem? checks if a term u is already equivalent to any subterm of a term v under
a substitution s. It makes use of same-s? in the check. If the result of unifying u and v is the
same as the substitution s itself, then the two terms are equivalent.

#| Term ⨯ Term ⨯ Subst ⟶ Bool |#
(define (mem? u v s)
(let ((v (walk v s)))

(or (same-s? u v s) (and (pair? v) (or (mem? u (car v) s) (mem? u (cdr v) s))))))

We write a third constraint-violation predicate to search for a violated symbolo constraint.
For each term under a symbolo constraint, we look if that term, relative to the substitution, is
anything but a symbol or a variable. If so, that term violates the constraint. We define the
function walk in the Appendix. The not-pairo violation predicate operates similarly. Their
definitions complete our implementation of the common Kanren symbolic constraints.
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> (make-constraint-system (=/= absento symbolo not-pairo)
...
(λ (s) (ormap (λ (y)

(let ((t (walk y s)))
(not (or (symbol? t) (var? t)))))

symbolo))
(λ (s) (ormap (λ (n)

(let ((t (walk n s)))
(not (or (not (pair? t)) (var? t)))))

not-pairo)))

We show below the execution of an example microKanren program that uses all the typical
Kanren constraints. The result of invoking this program is a stream containing a single state.
We see that all the constraints are present in the constraint store, and we can read off each
constraint. The #hasheqv(...) is the printed representation of the hash table, whose elements
are the key/value pairs. For instance, the =/= field, (=/= . ((c . 0) (0 . b))), contains the
pairs (c . 0) and (0 . b). These are the =/= constraints that have been added.
> (call/initial-state 1

(call/fresh (λ (x)
(conj (== 'a x)

(conj (=/= x 'b)
(conj (absento 'b `(,x))

(conj (not-pairo x)
(conj (symbolo x)

(=/= 'c x)))))))))
'((#hasheqv((== . ((a . 0))) (=/= . ((c . 0) (0 . b))) (absento . ((b 0)))

(symbolo . (0)) (not-pairo . (0)))
. 1))

7 Adding new constraints
In addition to clarifying existing implementations, our framework also simplifies describing more
complicated symbolic constraints new to Kanren: booleano and listo. The first mandates that
the constrained term be a Boolean, and the second a proper list. These constraints have more
complex interactions than do the previous ones. As a result, we need several new predicates to
support the implementation of each of these constraints.

We suggest these new constraints, both because of their additional complexity, and also their
utility. With them, we can improve the implementations of relational interpreters, an archetypal
miniKanren programming example. Consider the partially-completed miniKanren definition of
the relational interpreter eval below.
(defmatche (eval e ρ v)
((,e ,ρ ,v) (fresh () (symbolo e) (lookup e ρ v)))
((,e ,ρ ,v) (fresh () (booleano e) (listo ρ)))
...)

If e is a variable, v is its value in the environment. We define lookup recursively as a three-
place relation. When the variable is found in the environment, we return its value. In prior
implementations of relational interpreters, the remainder of the environment remains uncon-
strained. Without the listo constraint, the only way to ensure our environments are proper
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lists requires a recursive relation. This amounts to enumerating proper lists of all given lengths.
Instead, we can now express infinitely many answers with a single listo constraint. We have also
more tightly constrained the implementation of lookup, which results in more precise answers.
(defmatche (lookup x ρ o)
((,x ((,x . ,o) . ,d) o) (listo d))
((,x ((,aa . ,da) . ,d) o) (fresh () (=/= aa x) (lookup x d o))))

In prior definitions of eval, rather than using a booleano constraint, we equated the term
first with #t, and then separately with #f. This generates near-duplicate programs that differ
in their placement of #t and #f. By instead “compressing” the Booleans into one, we ensure the
programs we generate have a more interesting variety.

7.1 Implementing booleano

Checking booleano involves more work than does checking the prior domain constraints, since
there are precisely two Boolean values. The first predicate if we have forbid a term from being
either of the constants #t and #f while demanding that it be a Boolean. We also need a predicate
to check for a booleano-constrained term that is a non-variable, non-Boolean. Finally since the
booleano domain constraint is incompatible with symbolo, the last predicate checks for terms
constrained by both.
> (make-constraint-system (=/= absento symbolo not-pairo booleano)

...
(let ((not-b (λ (s) (or (ormap (λ (pr) (same-s? (car pr) (cdr pr) s)) =/=)

(ormap (λ (pr) (mem? (car pr) (cdr pr) s)) absento)))))
(λ (s) (ormap (λ (b) (let ((s₁ (unify b #t s)) (s₂ (unify b #t s)))

(and s₁ s₂ (not-b s₁) (not-b s₂))))
booleano)))

(λ (s) (ormap (λ (b) (let ((b (walk b s)))
(not (or (var? b) (boolean? b)))))

booleano))
(λ (s) (ormap (λ (b) (ormap (λ (y) (same-s? y b s)) symbolo))

booleano)))

The following is an example of its use.
> (call/initial-state 1

(call/fresh (λ (x)
(conj (=/= #f x)

(conj (=/= #t x)
(booleano x))))))

'()

7.2 Implementing listo

Checking listo is more complicated still. Consequently some of the constraint-violation predi-
cates are also quite complex. We add four independent predicates to properly implement listo.

In the first of these, we look for an instance in which the end of a term labeled a proper list
l is required to be a symbol. The function walk-to-end recursively walks the cdr of a term x
in a substitution s and returns the final cdr of x relative to s. We use it in constraint-violation
predicates related to the listo constraint.
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#| Term ⨯ Subst ⟶ Bool |#
(define (walk-to-end x s)
(let ((x (walk x s)))

(if (pair? x) (walk-to-end (cdr x) s) x)))

The second predicate resembles the first, except it checks for a Boolean instead.

> (make-constraint-system (=/= absento symbolo not-pairo booleano listo)
...
(λ (s) (ormap (λ (l) (let ((end (walk-to-end l s)))

(ormap (λ (y) (same-s? y end s)) symbolo)))
listo))

(λ (s) (ormap (λ (l) (let ((end (walk-to-end l s)))
(ormap (λ (b) (same-s? b end s)) booleano)))

listo))
(λ (s) (ormap (λ (l) (let ((end (walk-to-end l s)))

(let ((s^ (unify end '() s)))
(and s^

(ormap (λ (n) (same-s? end n s)) not-pairo)
(or (ormap (λ (pr) (same-s? (car pr) (cdr pr) s^)) =/=)

(ormap (λ (pr) (mem? (car pr) (cdr pr) s^)) absento))))))
listo))

(λ (s) (ormap (λ (l) (let ((end (walk-to-end l s)))
(ormap (λ (pr) (and (null? (walk (car pr) s))

(mem? end (cdr pr) s)))
absento)))

listo))
...)

In the third, we check for a proper list that must have a definite fixed last cdr (the end)
under the substitution. This means either end already is (), or a not-pairo constrains end. If,
in addition, either =/= or absento constraints forbid end from being (), then that is a violation.
The following example demonstrates this behavior.

> (call/initial-state 1
(call/fresh (λ (x)

(conj (listo x)
(conj (not-pairo x)

(disj (=/= '() x)
(absento x '())))))))

'()

In the last predicate we require to correctly implement listo, end can be a proper list of
unknown length. An absento constraint forbidding () from occurring in a term containing end,
however, causes a violation. The constraint must precisely forbid () from occurring in a term
containing end to cause the violation.

> (call/initial-state 1
(call/fresh (λ (x)

(conj (listo x)
(absento '() x)))))

'()
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These constraint-violation predicates are somewhat involved—of necessity. We have ensured
that constraint violations can each be treated independently and that they comprise the entirety
of the constraint domain knowledge required. Furthermore, by requiring that our solver be
monotonic and logical, we have ensured that adding new constraints never requires the language
designer to modify existing predicates.

8 Related work
The modern development of CLP languages begins in the mid 1980s by groups in Melbourne,
Marseilles, and the ECRC. The CLP scheme [16] is an important development from this era. The
CLP scheme separates the inference mechanism from the constraint handling and satisfaction. It
subsumes many individual logic programming extensions and provides a theoretical foundation
for disparate CLP languages.

Schrijvers et al. offer different a motivation for separating constraint solving and search [27].
They implement different advanced search strategies via monad transformers over basic search
monads. It’s not yet clear where miniKanren’s interleaving DFS search fits into their framework,
although this is a topic we are currently investigating.

There exists a close connection between microKanren (and thus also miniKanren) and pure
Prolog. Spivey and Seres’s present embed a similar subset of Prolog work on a Haskell embedding
of Prolog [28], Kiselyov’s “Taste of Logic Programming” [21], and of course Ralf Hinze’s extensive
work on implementations of Prolog-style backtracking [13, 14] are all closely related to our
microKanren as well.

There exists a different sort of CLP paradigm based on research in constraint satisfac-
tion problems using constraint propagation to reduce the search space. cKanren, an earlier
miniKanren for CLP, takes this different approach and uses domain restriction and constraint
propagation [1]. Alvis et al. take as their primary example finite domains. cKanren returns
as answers ground instances that satisfy the program’s constraints. Unlike languages generated
by our framework, they provide constraint minimization and an answer-formatter in their im-
plementation. We presented a preliminary (non-archival) draft version of the current work at
Scheme Workshop 2015 [11].

9 Conclusion
We have presented a framework for developing microKanren-like CLP languages in an instance
of the CLP scheme. Decoupling the constraint management from the inference, control, and
variable management has helped to clarify the behavior of microKanren. We implement the
customary miniKanren constraints as well as interesting and useful new ones.

In our implementation we deliberately reject certain common optimizations and features
that would have complicated our implementation. We generate black-box constraint solvers,
rather than simplifying solvers. These generated constraint solvers are not at all specialized for
incremental constraint solving, to the point of not even checking for duplicate constraints. We
do not minimize even the answer constraint, nor do we perform any answer projection.

We do not intend to generate efficient, state-of-the-art CLP languages, and on that front
we have surely succeeded. Instead of efficiency, our aim is a simple, general framework for
implementing constraints in microKanren. We envision our framework as a lightweight tool
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for rapidly prototyping constraint sets. Language designers can explore and test constraint
definitions and interactions without building or modifying a complicated and efficient dedicated
solver. We also imagine it as an educational artifact that provides functional programmers a
minimal executable instance of the CLP scheme.

Although we have preferred simplicity over performance here, we hope to investigate the per-
formance impacts of various simple optimizations including incremental constraint solving, early
projection [9], attributed variables [15], or calling out to an appropriate dedicated constraint
solver. We are especially interested in developing these optimizations as series of correctness-
preserving transformations.

In future work we also hope to build an extensible, generic constraint simplification frame-
work analogous to our framework for building constraint solvers. The language designer should
have to write only the individual constraint simplification predicates for the framework to pro-
duce a simplifier. Ideally this framework will infer an efficient order in which to execute these
minimization functions based on an abstract interpretation. We also want to formalize the
meaning of a “kind” of constraint-violation. Defining precisely what violations a single predi-
cate should check will clarify the language designer’s precise responsibilities.

As it exists ours is a clear, simple framework for generating miniKanren languages with
constraints and serves as a test-bed for developing constraint systems and an artifact of study.
Further, it serves as a foundation for continued future work in designing constraint systems.
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Appendix: microKanren
(define (var n) n)
(define (var? n) (number? n))
(define (occurs? x v s)

(let ((v (walk v s)))
(cond ((var? v) (eqv? x v))

((pair? v) (or (occurs? x (car v) s)
(occurs? x (cdr v) s)))

(else #f))))
(define (ext-s x v s)

(cond ((occurs? x v s) #f)
(else `((,x . ,v) . ,s))))

(define (walk u s)
(let ((pr (assv u s)))

(if pr (walk (cdr pr) s) u)))
(define (unify u v s)

(let ((u (walk u s)) (v (walk v s)))
(cond ((eqv? u v) s)

((var? u) (ext-s u v s))
((var? v) (ext-s v u s))
((and (pair? u) (pair? v))
(let ((s (unify (car u) (car v) s)))

(and s (unify (cdr u) (cdr v) s))))
(else #f))))

(define ((call/fresh f) S/c)
(let ((S (car S/c)) (c (cdr S/c)))

((f (var c)) `(,S . ,(+ 1 c)))))

(define ($append $₁ $₂)
(cond ((null? $₁) $₂)

((promise? $₁)
(delay/name ($append $₂ (force $₁))))
(else

(cons (car $₁) ($append (cdr $₁) $₂)))))
(define ($append-map g $)

(cond ((null? $) `())
((promise? $)
(delay/name ($append-map g (force $))))
(else ($append (g (car $))

($append-map g (cdr $))))))
(define ((disj g₁ g₂) S/c) ($append (g₁ S/c) (g₂ S/c)))
(define ((conj g₁ g₂) S/c) ($append-map g₂ (g₁ S/c)))
(define (pull $) (if (promise? $) (pull (force $)) $))
(define (take n $)

(cond ((null? $) '())
((and n (zero? (- n 1))) (list (car $)))
(else (cons (car $)

(take (and n (- n 1))
(pull (cdr $)))))))

(define (call/initial-state n g)
(take n (pull (g `(,S₀ . 0)))))

(define-syntax-rule (define-relation (rid . args) g)
(define ((rid . args) S/c) (delay/name (g S/c))))
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