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In this paper we will present a general agglomeration law for sorting networks. Agglomeration is a
common technique when designing parallel programs to control the granularity of the computation
and thereby finding a better fit between the algorithm and the machine on which the algorithm runs.
Usually this is done by grouping smaller tasks and computing them en bloc within one parallel pro-
cess. In the case of sorting networks this could be done by computing bigger parts of the networks
with one process. The agglomeration law in this paper pursues a different strategy: The input data is
grouped and the algorithm is generalized to work on the agglomerated input while the original struc-
ture of the algorithm remains. This will result in a new access opportunity to sorting networks well
suited for efficient parallelization on modern multicore computers, computer networks or GPGPU
programming. Additionally this enables us to use sorting networks as (parallel or distributed) merg-
ing stages for arbitrary sorting algorithms and thereby combining new hybrid sorting algorithms with
ease. The expressiveness of functional programming languages helps us to apply this law to system-
atically constructed sorting networks leading to efficient and easily adaptable sorting algorithms. An
application example is given, using the Eden programming language to show the effectiveness of this
law.

1 Introduction

With the increased presence of parallel hardware the demand for parallel algorithms increases accord-
ingly. Of course this demand includes sorting algorithms as one of the major disciplines in computer
science. A particularly interesting class of sorting algorithms for parallelization is the class of oblivious
algorithms whereupon we will call a parallel algorithm oblivious “iff its communication structure and its
communication scheme are the same for all inputs the same size” [14].

Sorting networks are the most important representative of the class of oblivious algorithms. They
have been an interesting field of research since their introduction by Batcher [1] in 1968 and are experi-
encing a renaissance in GPGPU programming [17]. They are based on comparison elements, mapping
their inputs (a1,a2) 7→ (a′1,a

′
2) with a′1 = min a1 a2 and a′2 = max a1 a2 and therefore a′1 ≤ a′2. A simple

graphical representation is shown in Figure 1. The arrowhead in the box indicates where the minimum
is output.

↑
a2

a1 a′1 = min(a1,a2)

a′2 = max(a1,a2)

Figure 1: Comparison element (ascending).
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2 Agglomeration Law for Sorting Networks

A simple functional description of sorting networks results in a repeated application of this compari-
son element function with fixed indices for every step. For a sequence (a1, . . . ,an) of length n the specific
steps are fixed:

(a1, . . . ,an) 7→ . . . 7→ (a1, . . . ,ai, . . . ,a j, . . . ,an) 7→ (a1, . . . ,a′i, . . . ,a
′
j, . . . ,an) 7→ . . . 7→ (a′1, . . . ,a

′
n)

with i 6= j. In a specific step ai and a j are sorted with a comparison element, resulting in the sorted
sequence (a′1, . . . ,a

′
n).

Figure 2 shows a simple sorting network for lists of length 4. For every permutation of the input
(a1, . . . ,a4) the output (a′1, . . . ,a

′
4) is sorted – the comparisons are independent of the data base. Notice

the obvious inherent parallelism in the first two steps of the sorting network. The restriction to a fixed
structure of comparisons results in an easy to predict behavior and easy to detect parallelism.

a1
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a4

a′1
a′2
a′3
a′4
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↑

↑

↑

↑

Figure 2: Simple sorting network with comparison elements. Source: [10]

Some well-known sorting algorithms can be described as sorting networks, for example Bubble Sort
[10]. Especially in the case of systematically constructed sorting networks (e.g. Batcher’s Bitonic Sort or
Batcher’s Odd-Even-Mergesort) with their inherent functional structure an obviously correct description
of the algorithm is easily possible in a functional programming language such as Haskell [15].

In practice straightforward implementations of these algorithms often struggle with a too fine granu-
larity of computation and therefore do not scale well. Agglomerating parts of the algorithm is a common
step to deal with this problem when designing parallel programs (compare Foster’s PCAM method [6]).
For recursive algorithms for example it is a usual technique to agglomerate branches of the recursive tree
by parallelizing only until a specific depth of recursion. With a coarser granularity the computation to
communication ratio improves. A usual agglomeration for sorting networks is to place blocks or rows of
comparison elements in one parallel process.

In this paper a different approach is discussed. We will agglomerate the input data and alter the
comparison element to work on blocks of data. This approach is not based upon the specific structure
of a specific sorting network and can therefore be applied to any sorting network. On the other hand we
will see that the limited nature of sorting networks is necessary for this law to be correct. The application
of this law will open a different access to sorting networks allowing easy combination with other sorting
algorithms. Working on data structures instead of single elements leads to a suitable implementation
for modern multi-core computers, GPGPU concepts or computer networks. We will obtain an adequate
granularity of computation and the width of the sorting network can correspond with the number of pro-
cessor units. A second layer of traditional agglomeration (e.g. blocks or rows of comparison elements)
is independently possible.

In Section 2 we will discuss which demands are necessary for altered comparison elements to pre-
serve the algorithm’s functionality and correctness. In Section 3 an example is given showing situations
in which the application of this agglomeration is beneficial and tests with different approaches are eval-
uated. Section 4 discusses related work and Section 5 concludes.
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2 Agglomeration Law for Sorting Networks

In general, sorting networks work on sequences of elements A = (a1, . . . ,an). Our improvement will now
take a partition of the given sequence. In the following, we will use Haskell notation and lists instead of
sequences to improve readability, even though a more general type would be possible.

Theorem 1 (Agglomeration Law for Sorting Networks). Let A= [a1, . . . ,an] :: Ord⇒ [a] be a sequence
with an associated total order “≤”, c :: (a,a)→ (a,a) a comparison element as described before and

sN :: ((a,a) → (a,a)) → [a] → [a]

a correct sorting network, meaning sN c A= A′ with A′ = [a′1, . . . ,a
′
n] and a′1 ≤ . . .≤ a′n where a′1, . . . ,a

′
n

is a permutation of a1, . . . ,an and the only operation used by the sorting network is a repeated application
of the comparison element with a fixed, data independent structure for a given input size. And let A =
[A1, . . . ,An] with Ai = [ai1, . . . ,aini ]. Then there exists a comparison element c′ :: (([a], [a])→ ([a], [a])
with S c′ A= A′, A′ = [A′1, . . . ,A

′
n] and A′1 � . . .� A′n. Where A � B means that for two sequences A =

[a1, . . . ,ap] and B = [b1, . . . ,bq] every element of A is less than or equal to every element from B:

A� B⇔∀a ∈ A,∀b ∈ B : a≤ b

With blocks of data A′1, . . . ,A
′
n need not be a permutation of A1, . . . ,An. Note that the order relation

for blocks of data “�” defines only a partial order whereas the elements inside the blocks are totally
ordered. To this end we need to specialize the comparison element to deal with the case of overlapping
or encasing blocks and still fulfill all properties necessary for the sorting network to work correctly (cf.
Figure 3).
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ai1

≤
..
.
≤
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A j

a j1

≤
..
.≤

a jn j

(a)
maxA j ≤minAi or

maxAi ≤minA j

Ai

ai1

≤
..
.
≤

aini
A j

a j1

≤
..
.
≤

a jn j

(b)
maxA j ≤maxAi and

minA j ≤minAi or vice versa

Ai

ai1

≤
..
.
≤

aini
A j

a j1
≤

..
.
≤

a jn j

(c)
maxA j ≤maxAi and

minAi ≤minA j or vice versa

Figure 3: Cases for comparison elements for blocks of data: blocks can be ordered (with order relation
�), overlapping or encasing, where overlapping and encasing means that they do not have an order
between one another (meaning neither � nor � holds).

So if for example the input lists do overlap (e.g. c′ ([1,2,3,4], [3,4,5,6])) a simple swap would not
fulfill the requirements. We would rather expect a result like ([1,2,3,3], [4,4,5,6]) and therefore A′ can
not be a permutation of A but we expect that every element aij from A1, . . . ,An is in A′1, . . . ,A

′
n.

In the next step we will investigate which conditions a comparison element for blocks of data must
fulfill.



4 Agglomeration Law for Sorting Networks

2.1 Comparison element for partially ordered blocks of totally ordered elements

If we want to alter the comparison element while preserving the functionality and correctness of the
sorting network we must understand which information is generated and preserved within a traditional
comparison element. At first we will therefore investigate the capabilities and limits of comparison
elements for totally ordered sequences: Let a1,a2,a1

1,a
2
1,a

1
2,a

2
2 be elements where information about the

following relations have already been gathered by the sorting network:

a1
1 ≤ a1 ≤ a2

1 and a1
2 ≤ a2 ≤ a2

2

If we do sort a1 and a2 with an comparison element (a1,a2) 7→ (a′1,a
′
2) we receive new relations (e.g.

a1
1 ≤ a1 ⇒ a1

1 ≤ a′2). We will distinguish between direct relations and conditional relations. Hereby
direct relations refer to all direct resulting relations which are valid in any case and which involve
a1,a2,a′1 or a′2. We expect the comparison element to be side effect free and therefore we expect every
relation between elements not touched by the comparison element to be unaffected by the application of
the comparison element. Here the direct relations are:

a′1 ≤ a′2 (1)

a′1 ≤ a2
i , i ∈ {1,2} (2)

a1
i ≤ a′2, i ∈ {1,2} (3)

If we have additional information, we get additional relations. For {i, j}= {1,2}:

a1
i ≤ a j ⇒ a1

i ≤ a′1 (4)

a j ≤ a2
i ⇒ a′2 ≤ a2

i (5)

ai ≤ a j ⇒ a1
i ≤ a′1∧a′2 ≤ a2

j (6)

Lemma 1. Let A1,A2 :: (Ord a)⇒ [a] And let c′ :: ([a], [a])→ ([a], [a]) be a comparison element with
c′(A1,A2) = (A′1,A

′
2) and A′1 � A′2 where all elements from A1 and A2 which are less than

lb= max(min(A1) min(A2))

must be in A′1, all elements which are greater than

ub= min(max(A1) max(A2))

must be in A′2 and all elements between these limits can be either in A′1 or in A′2 as long as every element
in A′1 is smaller than or equal to every element in A′2 (cf. Figure 4 and Appendix A).

Then the direct relations analogous to the case of the original comparison element do hold.

Proof. 1. A′1 � A′2 is included in the definition.

2. maxA′1 ≤ ub≤minA2i⇒ A′1 � A2i, i ∈ {1,2}
3. maxA1i ≤ lb≤minA′2⇒ A1i � A′2, i ∈ {1,2}
4. A1i � A1∧A1i � A2, i ∈ {1,2}⇒ A1i � [min(minA1minA2)]� A′1⇒ A1i � A′1

5. A1 � A2i∧A2 � A2i, i ∈ {1,2}⇒ A′2 � [max(maxA1maxA2)]� A2i⇒ A′2 � A2i

6. A1i � Ai � Aj⇒ A1i � A′1
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min(A2)

min(A1)

max(A1)

max(A2)

A1

A2

u
m

o

Figure 4: Sections of the comparison element for blocks of data. Elements from u must be in the lesser
result (A′1), elements from o must be in the greater result (A′2) and elements from m can be in both results
as long as A′1 � A′2 holds.

All other producible information are about conditional relations which depend on a condition. For
example

(a1 ≤ a2∨a2 ≤ a1)∧a1
1 ≤ a1 ≤ a2

1⇒ a1
1 ≤ a′1∨a′2 ≤ a2

1

For ordered or overlapping blocks we can easily verify that all these relations can be preserved. In this
case every input element has – analogous to the original comparison element – a direct descendant. In
which a direct descendant A′ of a block A is bounded by the extrema of the parental block, meaning that
minA≤minA′ and maxA′ ≤maxA. A′ can but need not contain elements from A as well as elements
which are not in A. Therefore the boundaries of each block can at the most come closer to each other
when applying the comparison element and all relations are preserved. An example is given in Figure 5.
In Figure 5b we can see A′1 as the descendant of A2 and A′2 as the descendant of A1.

A1
1

A1

A2
1

A2
2

A2

A1
2

max(A2)

min(A2)
min(A1)

max(A1)

(a)

A1
1

A′2

A2
1

A2
2

A′1

A1
2

�

(b)

Figure 5: Split of overlapping blocks. In this case the minimal (maximal) element of A2 is smaller than
the minimal (maximal) element of A1. Thereby A2 “shrinks” from above, meaning that the maximum
element of A′1 is smaller than maxA2) but this does not give any information about the number of elements
in A′1. A1 “shrinks” from below. All relevant relations are preserved.
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With encased blocks (cf. Figure 3c) it is not necessarily possible to find a descendant for every
element. If, for example, we have A1

1 � A1 � A2
1 and A1

2 � A2 � A2
2 there might be no output element A′i

with A1
1 � A′i � A2

1 (cf. Figure 6).

A1
1

A1

A2
1

A2

(a)

A1
1

A′2

A2
1

A′1

�

(b)

Figure 6: Split of encased blocks. There are no direct descendants. A′1 � A2
1 and A1

1 � A′2 but neither A′1
nor A′2 is between A1

1 and A2
1.

This means that the technique of merging and splitting blocks can not necessarily be transferred to a
more general sorting algorithm. In particular this does not work with pivot based sorting algorithms but
with sorting networks because the comparison element does not compare one fixed element with another
element but does rather return two sorted elements for which we do not know which input element is
mapped to which output element. The information A1

1 ≺ A1 is reduced to A1
1 � A′2 plus some previously

mentioned conditional information. Some of these conditional information can no longer be guaranteed
to hold but can not be used in a sorting network in any case because of the limited operations of sorting
networks. The relations of concern are

a1
i ≤ a′1∨a′2 ≤ a2

i , i ∈ {1,2} (7)

resulting from ai ≤ a j⇒ (a1
i ≤ a′1∧a′2 ≤ a2

j), {i, j}= {1,2} and a1 ≤ a2∨a2 ≤ a1.
Sorting networks as described above can not produce the additional information needed for this

conditional information to become useful.

Lemma 2. Information about the conditional relations (7) that can not be preserved by the altered
comparison element c′ can not be used by a sorting network.

Sketch of Proof. All information generated by the sorting network are of the form

1. a1 ≤ a j (direct relations)

2. ai ≤ a j⇒ ak ≤ al (conditional relations I)

3. ai ≤ a j ∨ak ≤ al (conditional relations II).

In particular the information that ai � a j can not be produced for any i and j. Furthermore it is not
possible to equalize an output element of the comparison element with another element and therefore it
is not possible to test whether ai ≤ a j or not. The conditional relation 7 does only exists if we do not
know wether or not a1 ≤ a2 or vice versa. Otherwise it is the case of Equation 6, a direct relation. We
can not test wether one side of Equation 7 is false or if both sides are equal and therefore the relation can
not be used.
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Lemma 1 and Lemma 2 imply that a comparison element c′ as demanded in Theorem 1 exists with
the given limitations from Lemma 1. Therefore every usable information is preserved and this technique
of merging and splitting two blocks in a comparison element can be used with every sorting network.

If the elements inside the blocks are sorted we can define a linear time comparison element that splits
the two blocks into blocks as equal in size as possible. An implementation of such a comparison element
for Haskell lists can be found in Appendix A. Balancing the blocks is advantageous in many cases
because it limits the maximal block size to the size of the largest block in the initial sequence. This is
beneficial especially in the situation of limited memory for different parts of the parallelized algorithm,
for example if the parallelization is done with a computer cluster. By preserving the inner sorting of
the blocks, the result sequence of the sorting network can be easily combined to a completely sorted
sequence by concatenation.

Every suitable sorting algorithm can be used for the initial sorting inside the blocks. Consequently
the sorting network can be used as a skeleton to parallelize arbitrary sorting algorithms and work as the
merging stage of the newly combined (parallel) algorithm. A concept that will prove its worth in the
following example.

3 Application of the Agglomeration Law on the Bitonic Sorter

We will now apply the agglomeration law to Batcher’s Bitonic Sorting Network. It is a systematically
constructed sorting network that works in two steps. In the first step an unsorted sequence (of length
2l with l ∈ N) is transformed into a bitonic sequence. A bitonic sequence is the juxtaposition of an
ascending and a descending monotonic sequence or the cyclic rotation of the first case (Figure 7).

1

4
5

8
7

6

3
2

3
2

1

4
5

8
7

6

Figure 7: Examples of bitonic sequences.

The bitonic sequence is thereafter sorted by a Bitonic Merger. We will call the function implementing
this Bitonic Merger bMerge and the function transforming an unsorted sequence into a bitonic sequence
prodBList. The Bitonic Sorter works with the nested divide-and-conquer scheme of the sorting-by-
merging idea. This means that the repeated generation of shorter sorted lists is done by Bitonic Sorters
of smaller size. A Bitonic Sorter for eight input elements is depicted in Figure 8.

The basic component of the sorting network – the original comparison element – can be defined as:

Listing 1: Original comparison element
data Direction = Up | Down deriving Show

compElem :: Ord a ⇒ Direction → [a] → [a]
compElem Up [x,y] = if x ≤ y then [x,y] else [y,x]
compElem Down xs = reverse $ compElem Up xs

We will use a two-element-list variant instead of pairs for reasons of code elegance.
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Figure 8: Bitonic Sorter of order 8. The function prodBList is represented by a red dashed rectangle,
the function bMerge by a blue dotted one. Bitonic Sequences are represented by shaded rectangles.

We will define the actual algorithm using the Eden[13, 12] programming language which extends
Haskell with the concept of parallel processes with an implicit communication as well as a Remote Data
[4] concept. We can instantiate a process that is defined by a given function with ($#):

($#) :: (Trans b, Trans a) ⇒
(a → b) -- Process function
→ a → b -- Process input and output

The class Trans consists of transmissible values. The expression f $# expr with some function
f :: a → b will create a (remote) child process. The expression expr will be evaluated (concurrently
by a new thread) in the parent process and the result val will be sent to the child process. The child
process will evaluate f $ val (cf. Figure 9).

parent process
(evaluates expr to val)

child process

release ◦ f
val

(f $ val)
result of

creates

Figure 9: The scheme for process instantiation. Source: [12]

Hereafter we will essentially use Eden’s parMapAt, a parallel variant of map with explicit placement
of processes on processor elements (PEs), also called (logical) machines, which are numbered from 1 to
the number of processor elements.

parMapAt :: (Trans a, Trans b) ⇒
[Int] -- ^places for instantiation

→ (a → b) -- ^worker function
→ [a] → [b] -- ^task list and ^result list

The explicit placement is realized by the first argument, a list of PE numbers specifying the places
where the processes will be deployed. Additionally we will use the constants noPe and selfPe provided
by Eden to calculate the correct placements:
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noPe :: Int -- Number of (logical) machines in the system
selfPe :: Int -- Local machine number (ranges from 1 to noPe)

For our implementation we will place each comparison element of the same row on the same PE. In
Listing 2 a parallel definition of the algorithm is given.

Listing 2: Parallel bSort
37 bSort :: Trans a
38 ⇒ (Direction → [a] → [a]) -- ^specialized comparison element
39 → Direction -- ^sorting direction
40 → [a] → [a] -- ^input and ^output
41 bSort _ _ [ ] = [ ]
42 bSort _ _ [x] = [x]
43 bSort sCompElem d xss = (bMerge sCompElem d) ◦ prodBList $ xss where
44 prodBList = unSplit ◦ pMap bSort ’ ◦ zip [Up, Down] ◦ splitHalf
45 bSort ’ = uncurry (bSort sCompElem)
46 pMap = parMapAt [selfPe , selfPe+hcc]
47 hcc = (length xss) ‘div ‘ 4 {- half comparator count -}

The bSort function takes three arguments: an oriented comparison element, a Direction denoting
whether the result should be sorted ascending or descending and an input list. The main part of the
algorithm is a composition of the prodBList and the bMerge function (cf. Line 43 in Listing 2). The
prodBList function splits the input list and sorts both parts with the Bitonic Sorter, one half ascending
and one half descending (cf. Line 44). It uses two helper functions splitHalf and unSplit. With the
help of Eden’s splitIntoN, which splits the input list blockwise into as many parts as the first parameter
determines, we define:

splitHalf :: [a] → [[a]]
splitHalf = splitIntoN 2

Both resulting lists are of the same size because the width of the Bitonic Sorter and therefore its input
list’s length are powers of two (not to be confused with the size of the blocks which can be of arbitrary
size). The needed reverse function – unSplit – can be defined as:

unSplit :: [[a]] → [a]
unSplit = concat

The correct (row wise) placement is calculated depending on the width of the sorting network (cf.
Line 47). Two elements are needed for every comparison element, therefore hcc is half the size of the
sorting network in the actual recursion step. The bMerge function does have the same type signature
than the bSort function but the input list must be a bitonic list for the function to work correct:

Listing 3: Parallel bMerge
50 bMerge :: Trans a
51 ⇒ (Direction → [a] → [a]) -- ^specialized comparison element
52 → Direction -- ^sorting direction
53 → [a] → [a] -- ^input and ^output
54 bMerge sCompElem d xss@[x,y] = sCompElem d xss
55 bMerge sCompElem d xss = unSplit ◦ pMap (bMerge sCompElem d) ◦ bSplit $ xss where
56 bSplit = splitHalf ◦ shuffle ◦ pMap ’ (sCompElem d) ◦ perfectShuffle
57 pMap = parMapAt [selfPe , selfPe+hcc]
58 hcc = (length xss) ‘div ‘ 4 {- half comparator count -}
59 pMap ’ = parMapAt [selfPe ..]
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The main part of the bMerge function is the function bSplit which splits a bitonic sequence into
two bitonic sequences with an order between each other. This function uses a communication structure
referred to as a perfect shuffle1 by Stone [20]. With this communication scheme the element i and i+ p

2
are compared resulting in a split depicted in Figure 10.

p
2

1 p p
2

1 p p
2

1 p p
2

1 p

Figure 10: Concept of splitting a bitonic sequence.

In Haskell this perfect shuffle is easily defined with the help of the auxiliary functions offered by
Eden:

-- Round robin distribution - inverse to shuffle
unshuffle :: Int → [a] → [[a]]
-- Simple shuffling - inverse to round robin distribution:
shuffle :: [[a]] → [a]

The first parameter of unshuffle specifies the number of sublists in which the list is split, e.g.:

unshuffle 3 [1..10] = [[1,4,7,10],[2,5,8],[3,6,9]]
shuffle [[1,4,7,10],[2,5,8],[3,6,9]] = [1..10]

The perfect shuffle is then defined as:

perfectShuffle :: [a] → [[a]]
perfectShuffle xs = unshuffle halfSize xs

where halfSize = (length xs) ‘div ‘ 2

A direct communication between consecutive comparison elements can be realized with Eden’s Re-
mote Data concept in which a smaller handle is transmitted instead of the actual data. The data itself is
fetched directly when needed from the PE where the handle was created. This can be done by the basic
operations fetch and release:

type RD a -- remote data

-- converts local data into corresponding remote data.
release :: Trans a ⇒ a → RD a
-- convert remote data into local data
fetch :: Trans a ⇒ RD a → a

-- list variants
releaseAll :: Trans a ⇒ [a] → [RD a]
fetchAll :: Trans a ⇒ [RD a] → [a]

In Figure 11 the communication scheme of a Remote Data connection is pictured.

1This structure can be found in various algorithms e.g. in the Fast Fourier transform or in matrix transpositions.



Lukas Schiller 11

PE0

f

release ◦ f

PE1 g

release ◦ f

PE2

inp

(a) Indirect connection.
(g $# (f $# inp))

PE0

release ◦ f

PE1

g ◦ fetch

PE2

inp

(b) Direct connection.
(g ◦ fetch) $# ((release ◦ f) $# inp)

Figure 11: Remote Data scheme. Source: [12]. The process computing the result of the function f is
placed on one PE, the second process computing the result of the function g is placed on another PE.
Without RD, the result of f is transferred via the parental process (placed on PE0). With RD a handle
is generated on PE1 and transferred via PE0 to PE2. The actual result is transferred directly from PE1 to
PE2. With more intermediate steps involved, the benefits of this concept are getting more effective.

If we call the bSort function with the original comparison element and the needed organization of
the communication via Remote Data we receive a correct implementation of the Bitonic Sorter:

Listing 4: Parallel variant of the original Bitonic Sorter
89 bitonicSort "simple" = unwrap ◦ bSort sCompElem Up ◦ wrap where
90 wrap = releaseAll
91 unwrap = fetchAll
92 sCompElem :: (Trans a, Ord a) ⇒ Direction → [RD a] → [RD a]
93 sCompElem d = releaseAll ◦ compElem d ◦ fetchAll

To apply the agglomeration law we can change the comparison element to the previously discussed
comparison element from Appendix A. In Listing 5 an optimized implementation is given which uses
unboxed vectors to optimize transmissions. For reasons of comparability, the list variant of the altered
comparison element and the merge sort from Data.Lists is used.

Listing 5: Combination of Mergesort with the Bitonic Sorter
101 bitonicSort "block" = unwrap ◦ bSort sCompElem Up ◦ preSort ◦ wrap where
102 wrap = releaseAll ◦ map V.fromList ◦ splitIntoN p
103 unwrap = concat ◦ map V.toList ◦ fetchAll
104 p = noPe ∗ 2 -- two input lists per row , one row for every PE
105 places = 1 : 1 : map (1+) places
106
107 preSort :: (V.Unbox a, Ord a) ⇒ [RD (V.Vector a)] → [RD (V.Vector a)]
108 preSort = parMapAt places sSort where
109 sSort = release ◦ V.fromList ◦ sort ◦ V.toList ◦ fetch
110
111 sCompElem :: (V.Unbox a, Trans a, Ord a)
112 ⇒ Direction → [RD (V.Vector a)] → [RD (V.Vector a)]
113 sCompElem d = releaseAll ◦ map V.fromList ◦ compElemB d ◦ map V.toList ◦ fetchAll
114
115 compElemB :: Ord a ⇒ Direction → [[a]] → [[a]]
116 compElemB Up [xs,ys] = (λ(x,y) → [x,y]) $ simpleMergeSplit xs ys
117 compElemB Down xss = reverse $ compElemB Up xss



12 Agglomeration Law for Sorting Networks

This simple adaption results in a hybrid sorting algorithm parallelizing merge sort with the Bitonic
Sorter. We tested the algorithms on the multicore computer Hex and on the Beowulf Cluster2 in order
to compare the different implementations of Eden: with MPI[5] as a middleware and an implementation
optimized for multicore computers. First we will compare the above parallelization of merge sort using
the Bitonic Sorter, and another parallelization of the same merge sort using the disDC divide-and-conquer
skeleton from Eden’s skeleton library. Therefore both variants are implemented in Eden and equipped
with similar improvements. We will work on lists in particular since they are the usual choice of data
structure in Haskell but use unboxed vectors for transmissions. In Figure 12 the runtime graphs of the
parallel disDC merge sort and the Bitonic Sorter are depicted.
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Figure 12: Runtime and Speedup of the Bitonic Sorter and merge sort on Hex with 226 and 227 elements.

The graphs indicate that although the respective runtimes are fairly similar, the Bitonic Sorter variant
scales better for larger inputs. The assumption can be hardened by the examination of the corresponding
(absolute) speedups. The better scalability of the Bitonic Sorter can partly be explained by the merging
that consists of many small steps with comparison elements. This concept of merging can benefit from a
great number of PEs. A discovery that can also be made on the Beowulf Cluster though it is notable that
here the perceived characteristics are even more pronounced (cf. Figure 13)
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Figure 13: Runtime and Speedup of merge sort with the Bitonic Sorter as merge stage compared to a
traditional merge sort on the Beowulf Cluster with 224 elements.

On the Beowulf Cluster the communication between different PEs located on the same computer
is cheap while intercommunication between computers is proportionally slow. In this setting the local

2Hex is equipped with an AMD Opteron CPU 6378 (64 cores) and 64 GB memory, the Beowulf cluster at the Heriot-Watt
University Edinburgh consists of 32 nodes, each one equipped with an Intel Xeon E5504 CPU (8 Cores) and 12 GB memory.
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communication structure of the bitonic sorting network is well suited. The fixed communication structure
of the Bitonic Sorter allows for an accurate process placement where the structure of the Bitonic Sorter
is aligned to the structure of the cluster.

Another remarkable property of the bitonic sorting network has the potential of working with dis-
tributed input and output. The algorithm can work with distributed data without the need to aggregate
the data. This is particularly interesting for very large sets of data. We will therefore compare the bitonic
sorter to the PSRS algorithm [11], a parallel variant of quicksort with an elaborated pivot selection which
guarantees a well-balanced distribution of the resulting lists. A comparison to PSRS is well-suited be-
cause the algorithmic structures are rather similar. In Figure 14 the runtime graphs of the PSRS algorithm
and the Bitonic Sorter are depicted. The algorithms are modified to work with distributed data, only the
sorting time without data distribution and collection is measured.
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Figure 14: Runtime and Speedup of merge sort with the Bitonic Sorter as merge stage compared to a
traditional merge sort on the Beowulf Cluster with 224 elements.

4 Related Work

There have been some newer approaches to sorting networks often in combination with hardware accel-
erators like FPGAs [16] or GPUs [8]. In particular GPGPU programming has led to a little renaissance
of sorting networks, especially with different implementations of the Bitonic Sorter [18, 7, 9] achieving
good results. However these realizations implement the bitonic sorter in the original way as presented by
Batcher or sometimes implement the Adaptive Bitonic Sorter [2] instead. The latter is a data dependent
variant of the Bitonic Sorter and therefore not a sorting network. Consequently the work presented in
this paper is closer to the different approaches of hybrid sorting algorithms. There are numerous ex-
amples for the benefit of hybrid sorting algorithms, for example in [19] a hybridization of Bucketsort
and Mergesort yields good results. Some ideas of this work were motivated by Dieterle’s [3] work on
skeleton composition.

5 Conclusion and Future Work

We have presented a different approach of agglomeration for sorting networks. This technique equips us
with the possibility to use sorting networks as a parallel merging stage for arbitrary sorting algorithms.
A versatile, easy adaptable and very promising approach. We are convinced that further improvements
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to the given example application are possible. We will further investigate different possibility of con-
structing different combinations of arbitrary sorting algorithms with sorting networks. Therefore we
will investigate possible connections to embedded languages that allow for GPGPU programming from
Haskell such as Accelerate3 or Obsidian4 or the possibility to combine the concise and easy to maintain
functional implementation of sorting networks with efficient sorting algorithms for example via Haskell’s
Foreign Function Interface. Furthermore, most of the findings of this paper are applicable to other sort-
ing networks such as Batcher’s Odd-Even-Mergesort. All further investigations could benefit from a cost
model that enables for better runtime predictions.
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Appendices

A A simple, balanced mergeSplit for comparison elements

Listing 6: A simple MergeSplit function working as a comparison element for blocks of data
71 simpleMergeSplit :: Ord a ⇒ [a] → [a] → ([a],[a])
72 simpleMergeSplit [] a2 = ([], a2)
73 simpleMergeSplit a1 [] = (a1 , [])
74 simpleMergeSplit a1 a2 = (s,b) where
75 ag = Ordered.merge a1 a2 -- merge from Data.List.Ordered
76 lb = max (minimum a1) (minimum a2)
77 ub = min (maximum a1) (maximum a2)
78 u = [x | x ← ag , x < lb]
79 m = [x | x ← ag , x ≥ lb , x ≤ ub]
80 o = [x | x ← ag , x > ub]
81 (m1 ,m2) = balancingSplit (length o - length u) m
82 s = u ++ m1
83 b = m2 ++ o
84 balancingSplit :: Int → [a] → ([a],[a])
85 balancingSplit d xs = splitAt lh xs where
86 lh = div (( length xs)+d) 2
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