
Submitted to:
WFLP 2016

c© S. Kutsch & C. Beierle
This work is licensed under the
Creative Commons Attribution License.

Using Haskell for a Declarative Implementation
of System Z Inference

Steven Kutsch
Faculty of Mathematics and Computer Science

University of Hagen
Germany

steven.kutsch@fernuni-hagen.de

Christoph Beierle
Faculty of Mathematics and Computer Science

University of Hagen
Germany

christoph.beierle@fernuni-hagen.de

Qualitative conditionals of the form ”if A then usually B” are a powerful means in knowledge rep-
resentation, establishing a plausible relationship between A and B. When reasoning based on condi-
tional knowledge consisting of a set of conditionals, a rich structure going beyond classical logic is
required, e.g. ranking functions that assign a degree of implausibility to each possible world. System
Z is a popular approach, using a unique partitioning of the knowledge base to generate the Pareto-
minimal ranking function. This ranking function is used to answer questions plausibly based on the
conditionals in the knowledge base. In this paper, we describe a Haskell implementation of system Z.
To keep the Haskell code as close as possible to the formal definition of System Z, we make extensive
use of language features such as list comprehension and higher order functions. For example, these
are used to generate the required partition of the knowledge base or to represent the induced ranking
function. The described system is used as a backend in the conditional reasoning tool InfOCF.

1 Introduction

Default rules of the form “If A then usually / normally / preferably B” play an important role in the area
of knowledge representation and reasoning. They establish plausible relationships between A and B. A
set of such rules can be used to represent the knowledge of a reasoning agent.

Example 1. The following four sentences describe plausible relations in the domain of birds

• “Birds usually fly”

• “Penguins are usually birds”

• “Penguins usually don’t fly”

• “Birds usually have wings”

A rational agent whose knowledge base is given by such a set of sentences should be able to reason
and to draw inferences based on these sentences. While such knowledge bases may contain all relevant
rules for an agent, they usually do not contain enough information to represent all plausible beliefs that
a reasoning agent, operating based on this knowledge, should have. For instance, while believing that
birds usually fly seems to be a direct consequence form the sentences given in Example 1, the situation
is not so clear regarding e.g. the question whether penguins having wings usually do not fly. Thus, for a
reasoning agent it is essential to extend a knowledge base to what is called a complete epistemic state,
containing all beliefs necessary to answer arbitrary questions [7]. There are many ways to inductively
complete a knowledge base and to represent the resulting epistemic state of an agent, e.g. using probabil-
ity distributions [10], possibility theory [5], or ordinal conditional functions [13, 14]. These approaches
assign a probability, possibility, or implausibility value to each possible world in order to be able to

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 HaskZ

compare different possible worlds accordingly. Based on the induced ordering of the possible worlds,
sentences as given in Example 1 can then be evaluated and used for inference.

An inference relation based on rules as given in Example 1 is nonmonotonic since the rules are
not strict, but also allow for exceptions. System P is an axiomatic system providing a set of desirable
properties for nonmonotonic inference relations [1]. It induces an inference relation by taking all models
of a knowledge base into account. System Z [11] is an approach to relax this condition by defining
an inference relation based on a single preferred model of a knowledge base. While there are other
implementations of System Z such as Z-log [9] that focus on exploring the computational complexity
of System Z, in this paper we present a declarative Haskell implementation of System Z called HaskZ.
The main objective of our implementation that is to be close to the formal definition of the underlying
concepts and algorithms. HaskZ also realizes system P inference, and supports experiments comparing
the different inference relations.

The rest of this paper is organized in the following way. In Section 2 we recall the background of
conditional logic, ranking functions and system Z as required here. in Section 3, we present a detailed
overview of the implementation of HaskZ, and in Section 4 it is shown how HaskZ can be used. In
Section 5, we conclude and point our further work.

2 Conditionals, Ranking Functions and System Z

Let L be a propositional language, generated by a finite set Σ of atoms a,b,c, We denote formulas
of L with uppercase letters A,B,C, In formulas, we omit the and-connective, writing AB instead of
A∧B. We indicate negation of a formula with overlining, i.e. A means ¬A. The set of possible worlds
Ω contains all propositional interpretations over L these interpretations can easily be identified with the
complete conjunctions over Σ. For ω ∈ Ω, ω |= A means that the propositional formula A ∈ L holds in
the possible world ω .

2.1 Conditionals and Ranking Functions

To formalize the idea of plausible, probable, or possible connections between propositions, we introduce
a new binary operator | to form conditionals.

Definition 2 (Conditionals). Let A,B ∈L. Then (B|A) is the conditional formalizing the conditional rule
“if A then (usually) B”. A is called the antecedent and B is called the consequence. The language of all
conditionals over a propositional language L is denoted by (L | L).

We will commonly use sets of conditionals as knowledge bases for our calculations.

Definition 3 (Conditional Knowledge Base). Let Σ be a propositional signature. A set

R= {(B1|A1), . . . ,(Bn|An)}

where every Ai,Bi ∈ L for i ∈ {1, . . . ,n}, is called a knowledge base.

Example 4 (Rbirds). We formalize the four sentences from Example 1 as conditionals.
Let Σ = {b(birds), p(penguins), f (flying),w(wings)}. The knowledge base Rbirds = {r1,r2,r3,r4}

consists of the four conditionals:

r1 = (f |b) “birds usually fly”

r2 = (b|p) “penguins are usually birds”

S. Kutsch & C. Beierle 3

r3 = (f |p) “penguins usually don’t fly”

r4 = (w|b) “birds usually have wings”
Conditionals are three-valued objects, which allows us to represent them as a generalized indicator

function going back to [4]

(B|A)(ω) =


1 if ω |= AB (verification)
0 if ω |= AB (falsification)
u if ω |= A (not applicable)

(1)

In order to give appropriate semantics to conditionals, they are usually considered within richer
structures such as epistemic states [7]. Beside certain (logical) knowledge, epistemic states also allow the
representation of preferences, beliefs, assumptions of an intelligent agent. Basically, an epistemic state
allows one to compare formulas or worlds with respect to plausibility, possibility, necessity, probability,
etc.

Spohn’s ordinal conditional functions, OCFs [12], also called ranking functions are capable of rep-
resenting a complete epistemic state.
Definition 5 (ordinal conditional functions, OCFs). A ordinal conditional function is a function κ : Ω→
N with κ−1(0) 6= /0.

Ranking functions assign a degree of implausibility to every possible world. The higher κ(ω), the
less plausible ω is considered by κ . Note that for each κ , at least one world must be most plausible, i.e.
having rank 0. An OCF κ can be extended to arbitrary formulas A ∈ L by

κ(A) =

{
min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise

(2)

and to conditionals (B|A) ∈ (L | L) by:

κ((B|A)) =

{
κ(AB)−κ(A) if κ(A) 6= ∞

∞ otherwise
(3)

Note that κ((B|A))> 0 since any ω satisfying AB also satisfies A and therefore κ(AB)> κ(A).
Since ranking functions represent an epistemic state of a reasoning agent, we can define the accep-

tance of a conditional by an agent in epistemic state κ .
Definition 6 (Acceptance of Conditionals). Let κ be a ranking function. The conditional (B|A) is ac-
cepted by κ , denoted by κ |= (B|A), iff

κ(AB)< κ(AB). (4)

Thus, a conditional is accepted iff its verification is considered strictly more plausible then its falsi-
fication.

We say that κ accepts a knowledge baseR, denoted by κ |=R, iff κ |= (B|A) for ever (B|A) ∈R. A
knowledge base is consistent, iff a ranking function exists that accepts it [11].
Example 7. Consider the knowledge base Rbirds from Example 4. Table 1 shows a ranking function κ

that accepts every conditional inRbirds.
Every ranking function induces a non-monotonic inference relation between formulas. This relation

is based on the acceptance of conditionals in Definition 6.
Definition 8 (Ranking Function Inference). Let A,B ∈ L and κ a ranking function. Then B is a non-
monotonic inference of A by κ , denoted by A |∼

κ
B, iff the conditional (B|A) is accepted by κ .

4 HaskZ

ω κ(ω) ω κ(ω) ω κ(ω) ω κ(ω)

bp f w 2 bp f w 0 bp f w 2 bp f w 0
bp f w 2 bp f w 1 bp f w 2 bp f w 0
bp f w 1 bp f w 1 bp f w 2 bp f w 0
bp f w 1 bp f w 1 bp f w 2 bp f w 0

Table 1: Ranking functions accepting the knowledge baseRbirds from example 4

2.2 System P and p-entailment

A common benchmark for non-monotonic inference relations is the axiom system P [1]. While the
details of System P are not needed here, an important result is that it induces system P inference, called
p-entailment, that coincides with the inference relation that takes every ranking function accepting a
given knowledge base into account.

Definition 9 (p-entailment). [6] Let A,B ∈ L and R a knowledge base. Then B is p-entailed from A in
the context ofR, denoted by A |∼R

p B, iff A |∼
κ

B for every κ acceptingR.

Since a knowledge base is only consistent if a ranking function accepting it exists, this form of
inference can be implemented by testing the consistency of the knowledge base augmented by the negated
query conditional.

Proposition 10. [6] LetR be a consistent knowledge base. Then

A |∼R
p B iff R∪

{
(B|A)

}
is inconsistent. (5)

For checking the consistency of R, a special partition of R based on the notion of tolerance can be
used. Intuitively, a conditional r is tolerated by a set of conditionalsR, iff there is a world ω that satisfies
r and does not falsify any r′ ∈R (as defined by (1)).

Definition 11 (Tolerance). [6] A conditional (D|C) is tolerated by a knowledge base R, iff there is a
ω ∈Ω satisfying the formula

CD∧
∧
(B|A)

(A∨B).

for every (B|A) ∈R.

Definition 12 (Ordered Partition). [6] Let R be a set of conditionals. Rp = (R0, . . . ,Rk) is a ordered
partition, iff {R0, . . . ,Rk} is a partition of R and for every 0 6 i 6 k, every r ∈ Ri is tolerated by the
union

⋃k
j=iR j.

The notion of order partition yields a consistency test.

Proposition 13. [11]R is consistent, iff there is an ordered partition forR.

2.3 System Z

The condition for p-entailment is rather strict as it takes all ranking models of a knowledge base into
account, possibly disallowing inferences that may still be considered plausible, although they do not
hold in all ranking models of R, but e.g. in a subset of preferred ranking models of R. The idea

S. Kutsch & C. Beierle 5

Listing 1: Algorithm to test for consistency ofR (cf. [6]).
1 PROCEDURE: OrderedPartition

2 INPUT : Knowledge base R={(B1|A1),...,(Bn|An)}
3 OUTPUT : Ordered partition (R0,R1, . . . ,Rk) if R is consistent , NULL otherwise

4
5 INT i:=0;

6 WHILE(R 6= /0) DO

7 Ri := { (B|A) ∈R |R tolerates (B|A) };
8 IF(Ri 6= /0){
9 THEN

10 R:=R\Ri;

11 i:=i+1;

12 ELSE

13 RETURN NULL; //R is inconsistent

14 RETURN Rp = (R0, . . . ,Rk);

of system Z [11] is to define a plausible inference relation taking only a uniquely defined “best” or
preferred model into account. For any consistent knowledge baseR, System Z defines a unique ranking
function acceptingR. While in general, there are several different ordered partitions ofR, the procedure
OrderedPartition in Algorithm 1 calculates the inclusion maximal ordered partition of R, that is,
every conditional is in the lowest possible subset.

Using the partition Rp = (R0, . . . ,Rk) returned by OrderedPartition, the function Z : R →
{0, . . . ,k} is defined by

Z(r) = i iff r ∈Ri (6)

With this function the System Z ranking function κZ
R is defined as [11]

κ
Z
R(ω)=

{
0 iff ω does not falsify any (B|A) ∈R

max
(B|A)∈R

{Z((B|A))|ω |= AB}+1 otherwise. (7)

Because the ranking function κZ
R defined by System Z is based on the inclusion maximal partition

satisfying the tolerance relation, it can be shown that it is the, with respect to assigned ranks, minimal
ranking function acceptingR [11].

Example 14. The ranking function κ in Table 1 is the ranking function κZ
R using the inclusion-maximal

ordered partitionRbirds = ({(f |b),(w|b)} ,
{
(b|p),(f |p)

}
).

While p-entailment takes all ranking functions of R into account, z-entailment is the inference rela-
tion induced by the ranking function κZ

R.

Definition 15 (System Z inference; z-entailment). Let A,B ∈ L and R a knowledge base. Then B is
z-entailed from A in the context ofR, denoted by A |∼R

z B, iff A |∼
κZ
R

B.

The following example illustrates that z-entailment enables plausible inferences not possible with
p-entailment.

Example 16. A question we might want to answer based on the knowledge in Rbirds is whether winged
penguins are still unable to fly, that is whether from wp we can plausibly infer f in the context of R,
denoted by wp |∼R f .

6 HaskZ

If we add the conditional (f |wp), representing the negation of the query conditional (f |wp) to
Rbirds, the ordered partition ({(f |b),(w|b)} ,

{
(b|p),(f |p)

}
,{(f |wp)}) respects the tolerance condi-

tion. ThereforeRbirds∪{(f |wp)} is consistent and wp |�R
p f .

In contrast, using the ranking function κZ
R listed in Table 1 we see that κ(p f w) = 1 < 2 = κ(p f w)

and therefore wp |∼R
z f .

3 Implementation

The implementation of HaskZ can be split into three parts. In the first part we will pay attention to the
underlying datatypes that represent various formal parts of a logical language. The second part describes
the implementation of the consistency check algorithm (Algorithm 1) and how it is used to implement
p-entailment (Definition 9). The last section describes how κZ

R is calculated, represented, and used to
realize z-entailment.

3.1 Logical Formulas and Knowledge Bases

The basic typeclass is Atom. Together with the type Interpretation, representing possible worlds, it
is the basis of a logical system.

type Interpretation a = a -> Bool

class (Ord a) => Atom a where

evalA :: a -> Interpretation a -> Bool

printA :: a -> String

From this foundation, different types of formulas can be implemented. The typeclass Formula en-
capsulates these types of formulas and gives them a common interface.

class (Atom a) => Formula a f | f -> a where

evalF :: f -> Interpretation a -> Bool

printF :: f -> String

getAtoms :: f -> [a]

In our implementation we need literals, conjunctions of literals, and formulas in disjunctive normal
form (DNF), i.e. disjunctions of conjunctions. Any standardized representation of an arbitrary formula
would work here. The decision for DNFs is mainly founded by compatability to other reasoning systems.
For ease of modeling we represent conjunctions as lists of literals and DNFs as lists of conjunctions. All
these types of formulas have suitable Formula instances.

data Literal a = Pos a

| Neg a

deriving (Eq, Ord)

type Conjunction a = [Literal a]

type DNF a = [Conjunction a]

Conditionals can not yet be expressed in this framework. We define them outside of this framework
as pairs of formulas in disjunctive normal form and provide a three-valued datatype for evaluating them.

type Conditional a = (DNF a, DNF a)

data ConditionalIndicatorValue = Verified | Falsified | NotApplicable

S. Kutsch & C. Beierle 7

deriving (Show , Eq)

evalConditional :: Atom a => Conditional a

-> Interpretation a

-> ConditionalIndicatorValue

evalConditional c w = case (evalF (fst c) w, evalF (snd c) w) of -- (B|A)(w)

(True ,True) -> Verified -- AB

(False ,True) -> Falsified -- A!B

(_,False) -> NotApplicable -- !A

Note that the function evalConditional directly implements the generalized indicator function as
given in (1).

This foundation of types is general enough to build many kinds of classical logical systems. In this
paper, we only implement a propositional language by defining propositions as a type with a suitable
Atom instance.

data Proposition = A | B | C | D | E | F | G | H | I | J | K | L | M

| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

| Prop String

deriving (Show , Eq, Ord)

instance Atom Proposition where

evalA p i = i p

printA (Prop s) = s

printA p = map toLower $ show p

In this Atom instance, an interpretation i is just a function of type (Proposition -> Bool).
We represent a knowledge base as a record type, containing all the necessary information.

class (Atom a) => KnowledgeBase k a | k -> a where

name :: k -> String

signature :: k -> [a]

conditionals :: k -> [Conditional a]

printKB :: k -> String

data PropositionalKnowledgeBase =

PKB { pKBname :: String

, pKBsignature :: [Proposition]

, pKBconditionals :: [Conditional Proposition] }

Example 17. The knowledge baseRbirds from Example 4 is represented as:

c1 = ([[Pos F]],[[Pos B]])

c2 = ([[Pos B]],[[Pos P]])

c3 = ([[Neg F]],[[Pos P]])

c4 = ([[Pos W]],[[Pos B]])

kb_birds = PKB { pKBname = "birds"

, pKBsignature = [B,P,F,W]

, pKBconditionals = [c1, c2, c3,c4] }

Based on an actual knowledge base with a fixed and finite signature, we can generate the set Ω of all
possible worlds as a finite list of functions, making use of the bijection between complete conjunctions in
Ω and functions of the type ω : Σ→ Bool. These functions make use of the closed world assumption and
assign False to every atom not in the signature. The function bigOmega generates this list of functions,
by generating all possible combinations of True and False of length |Σ| and constructing a closure for

8 HaskZ

every combination using the function omega. This closure realizes a lookup, returning the boolean value
of the argument in this interpretation and False if the argument is not part of the signature.
omega :: (Eq a) => ([Proposition],[Bool]) -> Interpretation a

omega w = (\a -> case elemIndex a (fst w) of

Just x -> (snd w) !! x

Nothing -> False) -- closed world assumption

bigOmega :: PropositionalKnowledgeBase -> [Interpretation Proposition]

bigOmega kb = map (\x -> omega (props ,x)) $

combinations propcount [False , True]

where props = signature kb

propcount = length props

combinations :: (Num a, Ord a) => a -> [b] -> [[b]]

combinations n _ | n <= 0 = [[]]

combinations 1 xs = map (:[]) xs

combinations n xs = (:) <$> xs <*> combinations (n-1) xs

3.2 Consistency Check and System P

To implement the consistency check detailed in Algorithm 1 we need the tolerance relation between a
conditional and a knowledge base. We implement this relationship using two nested list comprehensions
which immediately follow from Definition 11.
tolerated :: Conditional Proposition -> PropositionalKnowledgeBase -> Bool

tolerated c kb =

not $ null [w | w <- bigOmega kb , evalConditional c w == Verified ,

null [c’ | c’ <- conditionals kb,

evalConditional c’ w == Falsified]]

We use the function bigOmega to generate the list of possible worlds as described above. If c=(B|A),
then the generated list is empty exactly when there is no ω ∈Ω for which ω |= AB and ω 6|=CD for any
c′ = (D|C) ∈R.

Using the function tolerated we can implement OrderedPartition (Algorithm 1) as a recursive
function orderedPartition. Since the Algorithm returns NULL if the knowledge base is inconsistent,
we use the Maybe type to handle failure.
orderedPartition :: PropositionalKnowledgeBase

-> Maybe [[Conditional Proposition]]

orderedPartition kb = fmap reverse (pkb [] $ conditionals kb)

where pkb parts [] = Just parts

pkb parts l = let tcs = toleratedcs l

in if (tcs == [])

then Nothing -- KB inconsistent

else pkb (tcs:parts) $ l \\ tcs

toleratedcs l =

[c | c <- l

, tolerated c (defaultPKB { pKBsignature = signature kb

, pKBconditionals = l })]

The locally defined function toleratedcs uses a list comprehension to construct the sublist only
containing conditionals tolerated by the original list (line 7 in Algorithm 1). It is necessary to use the
function defaultPKB to construct a knowledge base matching the type of tolerated. The function
pkb handles the bookkeeping such as the construction of the list of sublists and the actual recursion.

S. Kutsch & C. Beierle 9

It then returns the constructed ordered partition, or Nothing if there are no conditionals left that are
tolerated by the knowledge base. The resulting list of sublists needs to be reversed to fit the output of
OrderedPartition in Algorithm 1.

Since this algorithm realizes a consistency test for knowledge bases, we use it to implement p-
entailment from Definition 9, by testing the consistency of the knowledge base after adding the negated
query conditional.

p_entails :: PropositionalKnowledgeBase -> DNF Proposition

-> DNF Proposition -> Bool

p_entails kb ant con = isNothing $ orderedPartition kb ’

where kb ’ =

defaultPKB { pKBsignature = (signature kb),

pKBconditionals = ((negateDNF con),ant) : (conditionals kb) }

3.3 System Z

The computation of the unique minimal model of the knowledge base R is at the core of System Z. The
higher order function calcZ uses the function orderedPartition to generate the function Z :R→ N
as defined in (6).

calcZ :: PropositionalKnowledgeBase -> (Conditional Proposition -> Int)

calcZ kb = case orderedPartition kb of

Just parts -> (\c -> fromJust $ findIndex (elem c) parts)

Nothing -> error "KB inconsistent"

The returned function uses findIndex to determine the index of the partition containing its argu-
ment. Using the function fromJust is save in this case, since the only function using the returned
function is guaranteed to only pass it conditionals contained in the original knowledge base and there-
fore also contained in one of the sublists in the result of orderedPartition. The use of error in the
case of an inconsistent knowledge base is justified by the use case of HaskZ detailed in Section 4. HaskZ
can be used in an interactive session, where the error is simply printed as a message, or as a backend to
another program, that expects an error code in the case of an inconsistent knowledge base.

The function kappa_z generates the ranking function κZ
R : Ω→ N according to (7).

kappa_z :: PropositionalKnowledgeBase -> (Interpretation Proposition -> Int)

kappa_z kb = (\w -> if all notFalsified $ condStruct w

then 0

else maximum [z c | c <- falsifiedCs w] + 1)

where

z = calcZ kb

condStruct w = map ((flip evalConditional) w) $ conditionals kb

falsifiedCs w = [c | c <- conditionals kb

, evalConditional c w == Falsified]

The returned function models the formal definition of a ranking function closely, since ranking func-
tions are defined as functions between interpretations and positive integers, cf. Definition 5. Using this
function we can implement z-entailment A |∼R

Z B, i.e. checking whether A entails B in the context of the
knowledge base R using the unique ranking function κZ

R. We realize this relationship by implementing
Definition 6.

z_entails :: PropositionalKnowledgeBase

-> DNF Proposition -> DNF Proposition -> Bool

z_entails kb ant cons = min_kappa verifyingWorlds < min_kappa falsifyingWorlds

10 HaskZ

where worlds = bigOmega kb

kappa = kappa_z kb

verifyingWorlds = [w | w <- worlds

, evalF ant w

, evalF cons w]

falsifyingWorlds = [w | w <- worlds

, evalF ant w

, evalF (negateDNF cons) w]

min_kappa l = minimum $ map kappa l

We use list comprehensions to determine the worlds that verify or falsify the conjunction of the
antecedence and the consequence. From those we select the minimal κ-value. If the minimal rank of the
verifying worlds is smaller then the minimal rank of the falsifying worlds, the inference ant |∼

κZ
R
cons

holds.
In the implementation of HaskZ we make heavy use of features like list comprehensions and higher

order functions to stay close to the formal definitions. List comprehensions are used to construct lists of
objects that have the properties required by the definitions. We model interpretations as functions from
signatures to boolean values and ranking functions as functions from interpretations to positive integers.
All of this helps to see the close connections between runnable code and formal definition, and it makes
arguing about its correctness easy.

4 Using HaskZ

There are two ways of using HaskZ. It can be used for interactive experiments in a ghci session by
importing the relevant modules or as a backend that writes results to files in machine readable form. This
section details the work flow in both cases.

4.1 HaskZ in ghci

We start with a file named birds.hs containing the knowledge base Rbirds from Example 17 together
with the imports of modules containing the needed functionality.

import Data.Logic.SystemP

import Data.Logic.SystemZ

import Text.PrettyPrint.TruthTable

c1 = ([[Pos F]],[[Pos B]])

c2 = ([[Pos B]],[[Pos P]])

c3 = ([[Neg F]],[[Pos P]])

c4 = ([[Pos W]],[[Pos B]])

kb = PKB { pKBname = "birds"

, pKBsignature = [B,P,F,W]

, pKBconditionals = [c1, c2, c3,c4] }

For convenient use of the functions p entails and z entails we can define operators already
containing the knowledge base kb.

(|~p) = p_entails kb

(|~z) = z_entails kb

S. Kutsch & C. Beierle 11

Loading this file, after installing HaskZ with cabal1, in a ghci-session, allows us to perform several
experiments. We can calculate the ranking function κZ

R using the function printTruthTable.

> printTruthTable kb

b p f w|(f | b)|(b | p)|(!f | p)|(w | b)| kappa_z

-------|---------|---------|----------|---------|-------

0 0 0 0| u | u | u | u | 0

0 0 0 1| u | u | u | u | 0

0 0 1 0| u | u | u | u | 0

0 0 1 1| u | u | u | u | 0

0 1 0 0| u | - | + | u | 2

0 1 0 1| u | - | + | u | 2

0 1 1 0| u | - | - | u | 2

0 1 1 1| u | - | - | u | 2

1 0 0 0| - | u | u | - | 1

1 0 0 1| - | u | u | + | 1

1 0 1 0| + | u | u | - | 1

1 0 1 1| + | u | u | + | 0

1 1 0 0| - | + | + | - | 1

1 1 0 1| - | + | + | + | 1

1 1 1 0| + | + | - | - | 2

1 1 1 1| + | + | - | + | 2

-------|---------|---------|----------|---------|-------

Z(r)| 0 | 1 | 1 | 0 |

The result is produced using the boxes-library2. It lists every possible world in the first column,
followed by a column showing the Conditional Indicator Value (+ = verified, - = falsified, u =
not applicable) of every conditional in the knowledge base. The bottom line lists the value of the function
Z for every conditional, and the last column shows the calculated ranking function κZ

R.
Using the two operators for inference we can answer the queries from Example 16 in the context of

the knowledge base using the different semantics.

> [[Pos P, Pos W]] |~p [[Neg F]]

False

> [[Pos P, Pos W]] |~z [[Neg F]]

True

4.2 HaskZ as a backend

Currently, HaskZ is used as a backend in a conditional reasoning tool called InfOCF, that produces files
like birds.hs. These files also contain a main function that either writes some result to a file that can
be read by InfOCF or, in the case of inference, terminates with a return code to indicate the inference
result.

If we add the line

main = exportOCF kb

to the end of the file birds.hs and run the program using runhaskell, the following output is written
to the file birds systemz.ocf.

p,b,f,w

0,0,0,0;0

1www.haskell.org/cabal
2hackage.haskell.org/package/boxes

12 HaskZ

0,0,0,1;0

0,0,1,0;0

0,0,1,1;0

0,1,0,0;1

0,1,0,1;1

0,1,1,0;1

0,1,1,1;0

1,0,0,0;2

1,0,0,1;2

1,0,1,0;2

1,0,1,1;2

1,1,0,0;1

1,1,0,1;1

1,1,1,0;2

1,1,1,1;2

This file is then read by InfOCF and interpreted as a ranking function that can be compared with
other ranking functions produced by different backends.

To get the return code indicating the result of a query, we use either p entails rc or z entails rc

as our definition of main.

p_entails_rc :: PropositionalKnowledgeBase -> DNF Proposition

-> DNF Proposition -> IO ()

p_entails_rc kb ant con = if p_entails kb ant con

then exitSuccess

else exitFailure

Z_entails_rc :: PropositionalKnowledgeBase -> DNF Proposition

-> DNF Proposition -> IO ()

Z_entails_rc kb ant con = if z_entails kb ant con

then exitSuccess

else exitFailure

The return code is read by InfOCF, when it can be further processed depending on the calling func-
tion

5 Conclusions

We presented the declarative Haskell implementation of System Z called HaskZ. It makes use of high
level functional and declarative programming techniques to keep the executable code close to the formal
definitions. These features make it easy to follow the code based on the formal definitions and help to
convince the programmer and the user of the correctness of the implementation.

The foundational type definitions make it easy to formulate knowledge bases by hand and through
automated code generation. This makes HaskZ usable as a experimentation environment and as a back-
end to systems like InfOCF that also provide other nonmonotonic inference relations, e.g. based on
c-representations [8, 2, 3].

We plan to extend the foundational types to a more general framework for representing further logics
and additional inference relations in Haskell.

S. Kutsch & C. Beierle 13

References
[1] Ernest W. Adams (1975): The Logic of Conditionals: An Application of Probability to Deductive Logic.

Synthese Library, Springer Science+Business Media, Dordrecht, NL.
[2] C. Beierle, C. Eichhorn & G. Kern-Isberner (2016): Skeptical Inference Based on C-representations and its

Characterization as a Constraint Satisfaction Problem. In M. Gyssens & G. R. Simari, editors: Foundations
of Information and Knowledge Systems - 9th International Symposium, FoIKS 2016, Linz, Austria, March
7-11, 2016. Proceedings, LNCS 9616, Springer, pp. 65–82.

[3] C. Beierle, C. Eichhorn, G. Kern-Isberner & S. Kutsch (2016): Skeptical, Weakly Skeptical, and Credulous
Inference Based on Preferred Ranking Functions. In: Proceedings 22nd European Conference on Artificial
Intelligence, ECAI-2016. (to appear).

[4] B. DeFinetti (1974): Theory of Probability. 1,2, John Wiley & Sons.
[5] Didier Dubois & Henry Prade (2015): Possibility Theory and Its Applications: Where Do We Stand? In

Janusz Kacprzyk & Witold Pedrycz, editors: Springer Handbook of Computational Intelligence, Springer
Berlin Heidelberg, Berlin, DE, pp. 31–60.

[6] M. Goldszmidt & J. Pearl (1996): Qualitative probabilities for default reasoning, belief revision, and causal
modeling. Artificial Intelligence 84, pp. 57–112.

[7] J.Y. Halpern (2005): Reasoning About Uncertainty. MIT Press.
[8] G. Kern-Isberner (2001): Conditionals in nonmonotonic reasoning and belief revision. LNAI 2087, Springer,

Lecture Notes in Artificial Intelligence LNAI 2087.
[9] Michael Minock & Hansi Kraus (2002): Z-log: Applying System-Z. In: Proceedings of the 8th European

Conference on Logics in Artificial Intelligence (JELIA’02), pp. 545 – 548.
[10] Judea Pearl (1988): Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.
[11] Judea Pearl (1990): System Z: A natural ordering of defaults with tractable applications to nonmonotonic

reasoning. In Rohit Parikh, editor: Proceedings of the 3rd conference on Theoretical aspects of reasoning
about knowledge (TARK1990), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 121–135.

[12] W. Spohn (1988): Ordinal conditional functions: a dynamic theory of epistemic states. In W.L. Harper &
B. Skyrms, editors: Causation in Decision, Belief Change, and Statistics, II, Kluwer Academic Publishers,
pp. 105–134.

[13] Wolfgang Spohn (1988): Ordinal Conditional Functions: A Dynamic Theory of Epistemic States. In: Cau-
sation in Decision, Belief Change and Statistics: Proceedings of the Irvine Conference on Probability and
Causation, The Western Ontario Series in Philosophy of Science 42, Springer Science+Business Media, Dor-
drecht, NL, pp. 105–134.

[14] Wolfgang Spohn (2012): The Laws of Belief: Ranking Theory and Its Philosophical Applications. Oxford
University Press, Oxford, UK.

	Introduction
	Conditionals, Ranking Functions and System Z
	Conditionals and Ranking Functions
	System P and p-entailment
	System Z

	Implementation
	Logical Formulas and Knowledge Bases
	Consistency Check and System P
	System Z

	Using HaskZ
	HaskZ in ghci
	HaskZ as a backend

	Conclusions

